A New Proof of Diophantine Equation $\Bigg( \begin{matrix} n \\ 2 \end{matrix} \Bigg) = \Bigg( \begin{matrix} m \\ 4 \end{matrix} \Bigg)$
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{CMR-25-282,
author = {Zhu , Huilin},
title = {A New Proof of Diophantine Equation $\Bigg( \begin{matrix} n \\ 2 \end{matrix} \Bigg) = \Bigg( \begin{matrix} m \\ 4 \end{matrix} \Bigg)$},
journal = {Communications in Mathematical Research },
year = {2021},
volume = {25},
number = {3},
pages = {282--288},
abstract = {
By using algebraic number theory and $p$-adic analysis method, we give a new and simple proof of Diophantine equation $\Bigg( \begin{matrix} n \\ 2 \end{matrix} \Bigg) = \Bigg( \begin{matrix} m \\ 4 \end{matrix} \Bigg)$.
TY - JOUR
T1 - A New Proof of Diophantine Equation $\Bigg( \begin{matrix} n \\ 2 \end{matrix} \Bigg) = \Bigg( \begin{matrix} m \\ 4 \end{matrix} \Bigg)$
AU - Zhu , Huilin
JO - Communications in Mathematical Research
VL - 3
SP - 282
EP - 288
PY - 2021
DA - 2021/07
SN - 25
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/cmr/19336.html
KW - binomial Diophantine equation, fundamental unit, factorization, $p$-adic analysis method.
AB -
By using algebraic number theory and $p$-adic analysis method, we give a new and simple proof of Diophantine equation $\Bigg( \begin{matrix} n \\ 2 \end{matrix} \Bigg) = \Bigg( \begin{matrix} m \\ 4 \end{matrix} \Bigg)$.
HuilinZhu. (2021). A New Proof of Diophantine Equation $\Bigg( \begin{matrix} n \\ 2 \end{matrix} \Bigg) = \Bigg( \begin{matrix} m \\ 4 \end{matrix} \Bigg)$.
Communications in Mathematical Research . 25 (3).
282-288.
doi:
Copy to clipboard