@Article{JPDE-8-135,
author = {Zhou , Yi},
title = {Cauchy Problem for Semilinear Wave Equations in Four Space Dimensions with Small Initial Data},
journal = {Journal of Partial Differential Equations},
year = {1995},
volume = {8},
number = {2},
pages = {135--144},
abstract = { In this paper, we consider the Cauchy problem ◻u(t,x) = |u(t,x)|^p, (t,x) ∈ R^+ × R^4 t = 0 : u = φ(x), u_t = ψ(x), x ∈ R^4 where ◻ = ∂²_t - Σ^4_{i=1}∂²_x_i, is the wave operator, φ, ψ ∈ C^∞_0 (R^4). We prove that for p > 2 the problem has a global solution provided tile initial data is sufficiently small.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5647.html}
}