TY - JOUR
T1 - Existence of Bounded Solutions for Quasilinear Subelliptic Dirichlet Problems
AU - Xu , Chaojiang
JO - Journal of Partial Differential Equations
VL - 2
SP - 97
EP - 107
PY - 1995
DA - 1995/08
SN - 8
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5643.html
KW - Subelliptic equation
KW - weighted Sobolev's space
KW - Dirichlet problem
AB - This paper proves the existence of solution for the following quasilinear subelliptic Dirichlet problem: {Σ^m_{j=1}X^∗_ja_j(X, v, Xv)+ a_o(x, v, Xv) + H(x,v, Xv) = 0 v ∈ M^{1,p}_0(Ω) ∩ L^∞(Ω) Here X = {X_1 , …, X_m} is a system of vector fields defined in an open domain M of R^n, n ≥ 2, Ω ⊂ ⊂ M, and X satisfies the so-called Hormander's condition at the order of r > 1 on M. M_{1,p}_0(Ω) is the weighted Sobolev's space associated with the system X . The Hamiltonian H grows at most like |Xv|^p.