- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
Signal and image restoration problems are often solved by minimizing a cost function consisting of an $\ell_2$ data-fidelity term and a regularization term. We consider a class of convex and edge-preserving regularization functions. In specific, half-quadratic regularization as a fixed-point iteration method is usually employed to solve this problem. The main aim of this paper is to solve the above-described signal and image restoration problems with the half-quadratic regularization technique by making use of the Newton method. At each iteration of the Newton method, the Newton equation is a structured system of linear equations of a symmetric positive definite coefficient matrix, and may be efficiently solved by the preconditioned conjugate gradient method accelerated with the modified block SSOR preconditioner. Our experimental results show that the modified block-SSOR preconditioned conjugate gradient method is feasible and effective for further improving the numerical performance of the half-quadratic regularization approach.
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.1001.m2729}, url = {http://global-sci.org/intro/article_detail/jcm/8554.html} }Signal and image restoration problems are often solved by minimizing a cost function consisting of an $\ell_2$ data-fidelity term and a regularization term. We consider a class of convex and edge-preserving regularization functions. In specific, half-quadratic regularization as a fixed-point iteration method is usually employed to solve this problem. The main aim of this paper is to solve the above-described signal and image restoration problems with the half-quadratic regularization technique by making use of the Newton method. At each iteration of the Newton method, the Newton equation is a structured system of linear equations of a symmetric positive definite coefficient matrix, and may be efficiently solved by the preconditioned conjugate gradient method accelerated with the modified block SSOR preconditioner. Our experimental results show that the modified block-SSOR preconditioned conjugate gradient method is feasible and effective for further improving the numerical performance of the half-quadratic regularization approach.