- Journal Home
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
A Posteriori Error Analysis for Mixed Finite Element Solution of the Two-Dimensional Stationary Stokes Problem
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JCM-8-30,
author = {},
title = {A Posteriori Error Analysis for Mixed Finite Element Solution of the Two-Dimensional Stationary Stokes Problem},
journal = {Journal of Computational Mathematics},
year = {1990},
volume = {8},
number = {1},
pages = {30--44},
abstract = {
In this paper we present a posteriori error estimator in a suitable norm of mixed finite element solution for two-dimensional stationary Stokes problem. The estimator is optimal in the sense that, up to multiplicative constant, the upper and lower bounds of the error are the same. The constants are independent of the mesh and the true solution of the problem.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9417.html} }
TY - JOUR
T1 - A Posteriori Error Analysis for Mixed Finite Element Solution of the Two-Dimensional Stationary Stokes Problem
JO - Journal of Computational Mathematics
VL - 1
SP - 30
EP - 44
PY - 1990
DA - 1990/08
SN - 8
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jcm/9417.html
KW -
AB -
In this paper we present a posteriori error estimator in a suitable norm of mixed finite element solution for two-dimensional stationary Stokes problem. The estimator is optimal in the sense that, up to multiplicative constant, the upper and lower bounds of the error are the same. The constants are independent of the mesh and the true solution of the problem.
Wei Yuan. (1970). A Posteriori Error Analysis for Mixed Finite Element Solution of the Two-Dimensional Stationary Stokes Problem.
Journal of Computational Mathematics. 8 (1).
30-44.
doi:
Copy to clipboard