Volume 27, Issue 2
W01,p(x) versus C1 Local Minimizers for a Functional with Critical Growth

J. Part. Diff. Eq., 27 (2014), pp. 115-124.

Published online: 2014-06

Cited by

Export citation
• Abstract

Let $Ω⊂\mathbb{R}^N$, $(N ≥ 2)$ be a bounded smooth domain, p is Hölder continuous on $\overline{\Omega}$, $$1 ‹ p^–:=inf_Ωp(x)≤p^+=sup_Ωp(x)›∞,$$ and $f : \overline{\Omega}×\mathbb{R}→\mathbb{R}$ be a C¹ function with $f (x,s) ≥ 0, ∀(x,s)∈Ω×\mathbb{R}^+$ and $sup_x∈Ω f (x,s)≤ C(1+s)^{q(x)}$, $∀s∈\mathbb{R}^+, ∀x∈Ω$ for some $0‹q(x)∈C(\overline{\Omega})$ satisfying $1›p(x)›q(x)≥p^∗(x)-1, ∀x∈\overline{\Omega}$ and $1‹p^-≤p^+‹q^-≤q^+$. As usual, $p^∗(x)= \frac{Np(x)}{N-p(x)}$ if $p(x)‹N and p^∗(x)=∞$ if $p(x)≥N$. Consider the functional $I :W^{1,p(x)}_0 (Ω)→\mathbb{R}$ defined as $$I(u)^{def} = \int_Ω\frac{1}{p(x)}|∇u|^{p(x)}dx-\int_ΩF(x,u^+)dx, ∀u∈W^{1,p(x)}_0 (Ω),$$ where $F(x,u)=\int^s_0 f (x,s)ds$. Theorem1.1 proves that if $u_0∈C¹(\overline{\Omega})$ is a local minimum of I in the $C¹(\overline{\Omega})∩C_0(\overline{\Omega})$ topology, then it is also a local minimum in $W^{1,p(x)}_0 (Ω)$ topology. This result is useful for proving multiple solutions to the associated Euler-lagrange equation (P) defined below.

• Keywords

35J65, 35J20, 35J70

kasaoudi@gmail.com (K. Saoudi)

• BibTex
• RIS
• TXT
@Article{JPDE-27-115, author = {Saoudi , K.}, title = {W01,p(x) versus C1 Local Minimizers for a Functional with Critical Growth}, journal = {Journal of Partial Differential Equations}, year = {2014}, volume = {27}, number = {2}, pages = {115--124}, abstract = {

Let $Ω⊂\mathbb{R}^N$, $(N ≥ 2)$ be a bounded smooth domain, p is Hölder continuous on $\overline{\Omega}$, $$1 ‹ p^–:=inf_Ωp(x)≤p^+=sup_Ωp(x)›∞,$$ and $f : \overline{\Omega}×\mathbb{R}→\mathbb{R}$ be a C¹ function with $f (x,s) ≥ 0, ∀(x,s)∈Ω×\mathbb{R}^+$ and $sup_x∈Ω f (x,s)≤ C(1+s)^{q(x)}$, $∀s∈\mathbb{R}^+, ∀x∈Ω$ for some $0‹q(x)∈C(\overline{\Omega})$ satisfying $1›p(x)›q(x)≥p^∗(x)-1, ∀x∈\overline{\Omega}$ and $1‹p^-≤p^+‹q^-≤q^+$. As usual, $p^∗(x)= \frac{Np(x)}{N-p(x)}$ if $p(x)‹N and p^∗(x)=∞$ if $p(x)≥N$. Consider the functional $I :W^{1,p(x)}_0 (Ω)→\mathbb{R}$ defined as $$I(u)^{def} = \int_Ω\frac{1}{p(x)}|∇u|^{p(x)}dx-\int_ΩF(x,u^+)dx, ∀u∈W^{1,p(x)}_0 (Ω),$$ where $F(x,u)=\int^s_0 f (x,s)ds$. Theorem1.1 proves that if $u_0∈C¹(\overline{\Omega})$ is a local minimum of I in the $C¹(\overline{\Omega})∩C_0(\overline{\Omega})$ topology, then it is also a local minimum in $W^{1,p(x)}_0 (Ω)$ topology. This result is useful for proving multiple solutions to the associated Euler-lagrange equation (P) defined below.

}, issn = {2079-732X}, doi = {https://doi.org/10.4208/jpde.v27.n2.2}, url = {http://global-sci.org/intro/article_detail/jpde/5129.html} }
TY - JOUR T1 - W01,p(x) versus C1 Local Minimizers for a Functional with Critical Growth AU - Saoudi , K. JO - Journal of Partial Differential Equations VL - 2 SP - 115 EP - 124 PY - 2014 DA - 2014/06 SN - 27 DO - http://doi.org/10.4208/jpde.v27.n2.2 UR - https://global-sci.org/intro/article_detail/jpde/5129.html KW - p(x)-Laplacian equation KW - variational methods KW - local minimizer AB -

Let $Ω⊂\mathbb{R}^N$, $(N ≥ 2)$ be a bounded smooth domain, p is Hölder continuous on $\overline{\Omega}$, $$1 ‹ p^–:=inf_Ωp(x)≤p^+=sup_Ωp(x)›∞,$$ and $f : \overline{\Omega}×\mathbb{R}→\mathbb{R}$ be a C¹ function with $f (x,s) ≥ 0, ∀(x,s)∈Ω×\mathbb{R}^+$ and $sup_x∈Ω f (x,s)≤ C(1+s)^{q(x)}$, $∀s∈\mathbb{R}^+, ∀x∈Ω$ for some $0‹q(x)∈C(\overline{\Omega})$ satisfying $1›p(x)›q(x)≥p^∗(x)-1, ∀x∈\overline{\Omega}$ and $1‹p^-≤p^+‹q^-≤q^+$. As usual, $p^∗(x)= \frac{Np(x)}{N-p(x)}$ if $p(x)‹N and p^∗(x)=∞$ if $p(x)≥N$. Consider the functional $I :W^{1,p(x)}_0 (Ω)→\mathbb{R}$ defined as $$I(u)^{def} = \int_Ω\frac{1}{p(x)}|∇u|^{p(x)}dx-\int_ΩF(x,u^+)dx, ∀u∈W^{1,p(x)}_0 (Ω),$$ where $F(x,u)=\int^s_0 f (x,s)ds$. Theorem1.1 proves that if $u_0∈C¹(\overline{\Omega})$ is a local minimum of I in the $C¹(\overline{\Omega})∩C_0(\overline{\Omega})$ topology, then it is also a local minimum in $W^{1,p(x)}_0 (Ω)$ topology. This result is useful for proving multiple solutions to the associated Euler-lagrange equation (P) defined below.

K. Saoudi. (2019). W01,p(x) versus C1 Local Minimizers for a Functional with Critical Growth. Journal of Partial Differential Equations. 27 (2). 115-124. doi:10.4208/jpde.v27.n2.2
Copy to clipboard
The citation has been copied to your clipboard