- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
On Existence of Local Solutions of a Moving Boundary Problem Modelling Chemotaxis in 1-D
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-27-268,
author = {Wu , Shaohua and Yue , Bo},
title = {On Existence of Local Solutions of a Moving Boundary Problem Modelling Chemotaxis in 1-D},
journal = {Journal of Partial Differential Equations},
year = {2014},
volume = {27},
number = {3},
pages = {268--282},
abstract = { we prove the local existence and uniqueness of a moving boundary problem modeling chemotactic phenomena. We also get the explicit representative for the moving boundary in a special case.},
issn = {2079-732X},
doi = {https://doi.org/10.4208/jpde.v27.n3.7},
url = {http://global-sci.org/intro/article_detail/jpde/5142.html}
}
TY - JOUR
T1 - On Existence of Local Solutions of a Moving Boundary Problem Modelling Chemotaxis in 1-D
AU - Wu , Shaohua
AU - Yue , Bo
JO - Journal of Partial Differential Equations
VL - 3
SP - 268
EP - 282
PY - 2014
DA - 2014/09
SN - 27
DO - http://doi.org/10.4208/jpde.v27.n3.7
UR - https://global-sci.org/intro/article_detail/jpde/5142.html
KW - Keller-Segel model of chemotaxis
KW - moving boundary
KW - local existence
KW - special case
AB - we prove the local existence and uniqueness of a moving boundary problem modeling chemotactic phenomena. We also get the explicit representative for the moving boundary in a special case.
Shaohua Wu & Bo Yue. (2019). On Existence of Local Solutions of a Moving Boundary Problem Modelling Chemotaxis in 1-D.
Journal of Partial Differential Equations. 27 (3).
268-282.
doi:10.4208/jpde.v27.n3.7
Copy to clipboard