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Abstract

In this paper, the following two problems are considered:

Problem I. Given S € R"*?, X, B € R**™, find A € SR, such that AX = B, where
SRsn ={A € R™™zT(A— AT) =0, for all z € R(S)}.

Problem IL Given A* € R"*", find A € Sg such that |4 — A*|| = minaesy ||A— A%,
where SE is the solution set of Problem I.

The necessary and sufficient conditions for the solvability of and the general form of
the solutions of problem I are given. For problem II, the expression for the solution, a
numerical algorithm and a numerical example are provided.
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1. Introduction

Let R™*™ SR™ ™ OR™ "™ denote the set of real n x m matrices, real n x n symmetric
matrices and real n x n orthogonal matrices, respectively. The notation R(A), N(A), A* and
||A]| stand for the column space, the null space, the Moore-Penrose generalized inverse and the
Frobenius norm of a matrix A, respectively. I represents the identity matrix of order k. For
A = (a;;) € R™™ and B = (bj;) € R™™™, define A % B = (a;;b;;) € R™™ as Hardmard
product of A and B.

Inverse problem for nonsymmetric matrices and symmetric matrices have studied in [1-5],
and a series of perfect results have been obtained. However, inverse problem for matrices
between above two kinds of matrices, i.e., inverse problem for part symmetric matrices on a
subspace, have not been considered yet. In this paper, we will discuss this problem.

Let SR, = {A € RV"a2T(A — AT) = 0, for all z € R(S)}. we considered the following
problems:

Problem I. Given S € R"*?, X, B € R"*™, find A € SR, ,, such that AX = B.

Problem II. Given A* € R"*", find A € Sg such that

14 = A%|| = min ||A - A%,
€SE

where Sg is the solution set of Problem I.

In Section 2, the necessary and sufficient conditions for the solvability of Problem I have
been studied, and the general form of Sg has been given. In Section 3, the expression of the
solution of Problem II has been provided, and a numerical algorithm and a numerical example
are included.
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2. The Solution of Problem I

Let us first introduce some lemmas.
Lemma 1. Suppose the Singular- Value Decomposition (SVD) of matriz S in Problem I is

S=0, ( g 8 ) Vil = U AV, (2.1)

where U; = (U11, U12) S ORnxn, Uin € Rnxr’ Vi = (‘/11,V12) S ORpo, Vi1 € Rpxr}
A =diag(o1,09,...,0.) >0, and r =rank(S). Let

T [ A A
“A“‘<@1Am

Then A € SRy, if and only if Aj; € SR™ " and A5 = AY, € R™*(n=7),
Proof. If A € SR, then by z1(A — AT) =0, for all z € R(S), we have
ST(A—- ATy =0. (2.3)
_ AT _ AT
Substitute (2.1) and (2.2) into (2.3), we have V} ( A0 ) < An =y A — Ay ) Ul =o,

0 0 Agy — AT Agy — AL
_ AT _ AT
ie., ( A(Allo A11) A(A120 A12) > = 0. Hence A;; € SR™ " and A5 = Ag“l c Rrx(nfr)_

> ,A11 € R™*", (22)

Conversely, for all z € R(S), there exists y € RP*! such that z = Sy = U, < /S 8 > Vi'y.
By Ay = Af}, Ajp = AJ}, we have
Rl S LA

A O Ay — AT Ay, — AT
— VT T 11 11 12 21>UT
') (0 0><A21—A1T2 Ay — AL, )71
—0.

Hence A € SR; ;..
Lemma 2. Given Z € R™* Y € R™** and the SVD of Z is

Z=U ( ﬁ 8 ) Vi =UnAVE, (2.4)
where 01 = (UH, 012) S ORnxn, UH S Rnxm) ‘71 = (‘711,‘712) S ORka, ‘711 S kam}
A =diag(01,92,...,8r,) > 0,79 =rank(Z). Then there is a matric A € R™*" such that AZ =Y
if and only if YVi, = 0. In that case the general solution can be expressed as A =Y Z+ +C~¥U£,
where G € R™*("=70) s arbitrary matriz.
Lemma 3. Given Z,Y € R"*, and the SVD of Z is of the form (2.4). Then there is a
matriz A € SR™" such that AZ =Y if and only if ZTY =YTZ and YVi» = 0. In that case
the general solution can be expressed as A = YZT + (YZT (I, — ZZT) + Uio MUY, where
M € SR(m=ro)x(n=r0) s arbitrary matriz.

Partition UL X and U B, where U, is the same as (2.1), into the following form

Urx = ( 2 ) UI'B = ( g: ) ,X1,B; € R"™*™ X,, By € Rv—T)xm, (2.5)
Suppose the SVD of X5 is
r o0
X, =U, ( 0 0 ) Vol = Uy TV (2.6)

where Us = (U21,U22) S OR(nir)X(nir),Um S R(nir)Xkl,V2 = (‘/21,‘/22) S ORmxm;VM €
R™ M T =diag(ay,as,...,ax,) > 0,k =rank(X>).
Suppose the SVD of (X;V5,) is

Q 0
&w=%<oo>ﬁéwmﬁ (2.7)



