ON KORN'S INEQUALITY*1)

Lie-heng Wang

(LSEC, ICMSEC, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, China)

Abstract

This paper is devoted to give a new proof of Korn's inequality in L^r –norm $(1 < r < \infty)$.

Key words: Korn's inequality.

1. Introduction

Korn's inequality is fundamental in the theory and the numerical analysis for the elasticity. There have been many nice proofs of Korn's inequality in the literatures (see [4] and the references therein). The work [5] proposed an intuitive exposition and heuristic proof of Korn's inequality. And the works [2] and [7] give an interesting result, which is useful tool in the proof of Korn's inequality, as for example in the works [3], [6].

In this paper, we intend to show a new proof of Korn's inequality in L^r -norm $(1 < r < \infty)$, in the plane, with the help of the heurisite work [4] and the result of [2], [7].

2. Notation and Preliminaries

We begin with some notation. Let $\Omega \subset R^n (n=2,3)$ denote the bounded domain with smoothly boundary $\partial \Omega$ or the polygon. Let \vec{v} be the n-dimensional vector valued function defined in Ω , and

$$\epsilon_{ij}(\vec{v}) = \frac{1}{2}(\partial_j v_i + \partial_i v_j), \quad \partial_j v_i = \frac{\partial v_i}{\partial x_i}, \quad 1 \le i, \ j \le n.$$
(2.1)

And in this paper, the notation in Sobolev spaces [1] will be used.

Korn's inequality, in L^2 version, can be stated as follows: There exists C=Const. > 0, such that

$$\sum_{i,j} \|\epsilon_{ij}(\vec{v})\|_{0,\Omega}^2 + \|\vec{v}\|_{0,\Omega}^2 \ge C \|\vec{v}\|_{1,\Omega}^2 \quad \forall \mathbf{v} \in E,$$
(2.2)

where

$$E = \{ \vec{w} \in (L^2(\Omega))^2 : \epsilon_{ij}(\vec{w}) \in L^2(\Omega) \forall i, j \}.$$
(2.3)

Korn's inequality (2.2) means that the following cotaining relationship holds:

$$E \subset (H^1(\Omega))^n. \tag{2.4}$$

The relation (2.4) seems to be unexpected at the first glance, because, for the case n=3, only six independent linear combinations of partial derivatives of $\vec{v} \in (H^1(\Omega))^3$ belong to $L^2(\Omega)$. However when we consider it in depth, as in [5], we find that all second order partial derivatives of \vec{v} can be presented by the partial derivatives of $\epsilon_{ij}(\vec{v})$:

$$\frac{\partial^2 v_i}{\partial x_j \partial x_k} = \frac{\partial}{\partial x_j} \epsilon_{ik}(\vec{v}) + \frac{\partial}{\partial x_k} \epsilon_{ij}(\vec{v}) - \frac{\partial}{\partial x_i} \epsilon_{jk}(\vec{v}). \tag{2.5}$$

^{*} Received July 10, 2000, final evised October 20, 2000.

¹⁾ The propject supported by Natural Science Foundation of China.

322 L.H. WANG

Thus if $\vec{v} \in E$, then

$$\frac{\partial}{\partial x_k} \left(\frac{\partial v_i}{\partial x_j} \right) \in H^{-1}(\Omega) \ \forall \ i, j, k, \tag{2.6}$$

which, roughly speaking, can be seen (the rigorous proof can be found in [5], added by $\partial v_i/\partial x_j \in H^{-1}(\Omega) \forall i, j$) as

$$\frac{\partial v_i}{\partial x_j} \in L^2(\Omega) \ \forall \ i, j. \tag{2.7}$$

This means that $\mathbf{v} \in (H^1(\Omega))^n$.

3. The Proof of Korn's Inequality

In this section, we present a new proof of Korn's inequality in L^r version, $1 < r < \infty$, in the plane (n = 2), which can be stated in the following:

Theorem 1 (Korn's Inequality). There exists a positive constant α , such that

$$\sum_{i,j} \|\epsilon_{ij}(\vec{v})\|_{0,r,\Omega} + \|\vec{v}\|_{0,r,\Omega} \ge \alpha \|\vec{v}\|_{1,r,\Omega} \quad \forall \ \vec{v} \in (W^{1,r}(\Omega))^2.$$
(3.1)

In order to prove Theorem 1, we need some lemmas.

Lemma 1. For all $w \in L^r(\Omega)$,

$$\begin{cases}
||w||_{-1,r,\Omega} \le ||w||_{0,r,\Omega}, \\
||\nabla w||_{-1,r,\Omega} \le ||w||_{0,r,\Omega}.
\end{cases}$$
(3.2)

Lemma 1 can be proved easily by the definition of the $W^{-1,r}(\Omega)$ -norm.

Lemma 2 (c.f.[2],[6]). Assume that $\Omega \subset \mathbb{R}^2$ be a bounded smoothly domain or polygon. Let

$$L_0^r(\Omega) = \{ p \in L^r(\Omega) : \int_{\Omega} p dx = 0 \}.$$
 (3.3)

Then for any given $p \in L_0^{r'}(\Omega)$, $1 < r' = r/(r-1) < \infty$, r' the conjugate number of r, there exists $\vec{\phi}_0 \in (W_0^{1,r'}(\Omega))^2$, such that

$$div\vec{\phi}_0 = p \ in \ \Omega, \quad ||\vec{\phi}_0||_{1,r',\Omega} \le C||p||_{0,r',\Omega},$$
 (3.4)

with a constant C independent of $\vec{\phi}_0$ and p.

Lemma 3. For every function $v \in L^r(\Omega)$, $1 < r < \infty$,

$$||v||_{0,r,\Omega} \le \frac{1}{2C} ||\nabla v||_{-1,r,\Omega} + \frac{1}{|\Omega|^{1/r'}} |\int_{\Omega} v dx|,$$
 (3.5)

with the same C = Const. as in (3.4) and $|\Omega| = \int_{\Omega} 1 dx$.

Proof. For any given $v \in L^r(\Omega)$ let

$$\hat{v} = v - \frac{1}{|\Omega|} \int_{\Omega} v dx,$$

then

$$||v||_{0,r,\Omega} \le ||\hat{v}||_{0,r,\Omega} + \frac{1}{|\Omega|^{1/r'}} \Big| \int_{\Omega} v dx \Big|.$$
 (3.6)

And

$$\|\hat{v}\|_{0,r,\Omega} = \sup_{w \in L^{r'}(\Omega)} \frac{\int_{\Omega} \hat{v} \cdot w dx}{\|w\|_{0,r',\Omega}} = \sup_{w \in L^{r'}(\Omega)} \frac{\int_{\Omega} \hat{v} (\hat{w} + \frac{1}{\Omega} \int_{\Omega} w dy) dx}{\|w\|_{0,r',\Omega}} \leq \frac{1}{2} \sup_{\hat{w} \in L^{z'}(\Omega)} \frac{\int_{\Omega} \hat{v} \cdot \hat{w} dx}{\|\hat{w}\|_{0,r',\Omega}},$$