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Abstract

In this paper we introduce a primal-dual potential reduction algorithm for positive
semi-definite programming. Using the symetric preserving scalings for both primal and
dual interior matrices, we can construct an algorithm which is very similar to the primal-
dual potential reduction algorithm of Huang and Kortanek [6] for linear programming. The
complexity of the algorithm is either O(nlog(X° e S°/¢) or O(y/nlog(X° e S°/¢) depends
on the value of p in the primal-dual potential function, where X° and S° is the initial
interior matrices of the positive semi-definite programming.
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1. Introduction

In this paper, we consider the following standard form of positive semi-definite programming:
(PSP) Minimize CeX
Subject to A; X =b;, i=1,...m, X >0,
where C, X € M", A; e M", i =1,...m, and b € R™. Here M" denotes the set of symetric
matrices in R"*". Let M} denotes the set of positive semi-definite matrices in M"™ and M ,
denotes the set of positive definite matrices in M™. We call M, the interior of M"™. The
notation X > 0 means that X € M%, and X > 0 means that X € M7 . If X > 0 satisfies
all equations in (PSP), it is called a primal interior feasible solution. The e operation is the
matrix inner product
AeB = tT‘ATB = ZA”B”
i,j
The dual problem to (PSP) can be written as:
(PSD) Maximize bTy
Subject to S =C—Y", v, S =0,
where S € M", y € R™. If a point (y,S = 0) satisfies all equations in (PSD), it is called a dual
interior feasible solution.
Define the Frobenius norm, or the [> norm, of the matrix X € M™ by

X=Xy = VX e X = Z(M(X))Q,
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where \;(X) is the jth eigenvalue of X, and the [, norm of X by
1 X loo := max;jeqi,..ny{IA; (X)[}-

Since semi-definite programming has many applications in combinatorial optimization, con-
trol theory, statistics, etc., it becomes a hot research topic in optimization over the last decade.
Many interior point algorithms have been developed to solve the semi-definite programming.
The primal potential reduction algorithms were developed by Alizadeh [1], Nesterov and Ne-
mirovskii [7], Ye [13], etc.; the primal-dual potential reduction algorithms using symetric matrix
scaling were proposed by Nesterov and Todd [8], Kojima, Shindoh and Hara [4], among others.
In this paper, we introduce a primal-dual potential reduction algorithm, which uses seperate
matrices scaling, for above positive semi-definite programming. This kind of scaling has been
used extensively in interior point algorithms for linear programming (e.g.,Kojima et la’ [4],
Huang and Kortanek [7],[8], Gonzaga and Todd [6]). To the best of our knowledge we have
not seen a paper on interior-point algorithms for semi-definite programming which uses such
seperate matrices scaling.

To measure the progress of the algorithm, we will use the following primal-dual potential
function

#(X,S) =plogX ¢S —logdetXS. (1)

The reduction in potential function is controlled by the length of projection of the search
directions. In this paper we show that the length of projection is bounded below by 1/4
if p = n + +/n. Furthermore, we prove that the length is greater than or equal to one if
p > 2n + v/2n. These results are the extentions of the results in Huang and Kortanek [8] for
linear programming to semi-definite programming.

2. The Search Directions

The gradient matrices of (1) are

14 -1
X =—85-X 2
X,8) = L—X -85
Vos(X,5) = g X - 5 ®
Let A = (a1,---,a,) be any n x n matrix, where a; (j = 1,---,n) are columns of A, we
define the vector of A as follows:
’UCC(A) = (a’{a e 7GZ)T'
Then define
vec(Ap)T
vec(Az)T
A= .
vec(Am)T
Also define the operator A : M™ — R™ as follows:
AX = Avec(X).
Furthermore

ATy =" yids.
i—1

Given a primal-dual interior feasible solution (X°, y°, S°) such that AX® = b and S° =
C — ATy% and a B € (0,1), we consider the following homogeneous minimization problem:
(HPSD) min  Vex (X0 5% e AX + Veg(X0,S0) e AS
s.t. AAX =0
ATAy+AS =0
[(XO) 7P AX(XO) =21 + [|(S°) =" AS(SY)~?|IP < 8° < 1.



