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Abstract

In this paper, we construct and analyse a mortar finite volume method for the dis-
cretization for the biharmonic problem in R?. This method is based on the mortar-type
Adini nonconforming finite element spaces. The optimal order H>-seminorm error estimate
between the exact solution and the mortar Adini finite volume solution of the biharmonic
equation is established.
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1. Introduction

In recent years, the mortar finite element method as a special nonconforming domain de-
composition technique has attracted many researchers’ attention. More and more papers on
this method have appeared. We refer to [3] and [19] for the general presentation of the mortar
element method and [2], [7],[12], [15], and [20] for details.

In the mortar finite element method, the computational domain is first decomposed into
a coarse sub-domain partition. The triangulations on different sub-domains need not match
across sub-domain interfaces. The basic idea of this method is to replace the strong continuity
condition by a weaker suitable constraint on the interfaces between different sub-domains.
Suitable constraint, i.e., the mortar condition, guarantees the optimal discretization schemes.

On the other hand, the finite volume method (also called the box method, generalized differ-
ence method) is popular in computational fluid mechanics due to their conservation properties
of the original problems. In the past several decades, many researchers have analysed the finite
volume method for the selfadjoint (or non-selfadjoint and nondefinite) elliptic partial differen-
tial equations using the finite element spaces. Professors Ronghua Li et al have systematically
studied the finite volume method and obtained many significant results, we refer to the mono-
graph [18] for the general presentation of the finite volume method and [1], [5] [6], [8], [9] [13],
[16], [17], [21], and [22] for details.

Recently, Ewing, Lazarov and Lin [11] consider the mortar finite volume element approxi-
mations of second order elliptic equations on non-matching grids. The discretization is based
on the Petrov-Galerkin method with a solution space of continuous piecewise linear functions
over each sub-domain and a test space of piecewise constant functions. They use finite volume
element approximations on the sub-domains and finite element on the interfaces for Lagrange
multipliers and get an optimal order convergence in energy norm.

In the paper [14], we extend the mortar finite element method to the mortar finite volume
method, construct and study a mortar finite volume method which is based on the mortar

* Received March 7, 2002; final revised September 9, 2003.
1) This research is supported by the National Natural Science Foundation of China under grant 10071015.



476 C.J. BI AND L.K. LI

Crouzeix-Raviart finite element space. The optimal order error estimates in broken H'—norm
and in L?—norm have been developed.

In this paper, we construct and analyse the mortar finite volume method with Adini noncon-
forming element which is used to solve the biharmonic problem. The restriction of the mortar
finite element space to any sub-domain is the Adini nonconforming finite element space. In this
paper, we will prove the optimal order error estimate in broken H2—seminorm.

The remainder of this paper is organized as follows. In Section 2 we introduce notation,
construct a triangulation 75 of Q and give the corresponding dual partition. In Section 3, we
consider the mortar finite volume method, and get some lemmas which will be used in later
convergence proof. In Section 4, we estimate the difference between the exact solution and the
mortar finite volume approximation in H? broken seminorm.

2. Notation and Preliminaries

In this section, we provide some preliminaries and notation. In this paper, we suppose the
boundary of the multi-rectangular domain  parallel to the OX; and OX> axises. Consider
a geometrically conforming version of the mortar finite volume method, i.e., Q is divided into
non-overlapping rectangular sub-domains (2;

0 =ul

where Q; N ﬁj is an empty set or a vertex or an edge for i # j.

Each sub-domain ; is triangulated to produce an rectangular quasi-uniform mesh 75, =
{K} with mesh parameter h;, where h; is the largest diameter of the elements in 7,,. The
triangulations of sub-domains generally do not align at the sub-domain interfaces. Let I';;
denote the open straight line segment which is common to €2; and €2; and I' denote the union
of all interfaces between the sub-domains, i.e., I' = U0Q;\02. We assume that the endpoints
of each interface segment in I' are vertices of 7p, and Tj,. Let 7j, denote the global mesh U; 7y,
which is assumed quasi-uniform in this paper and h = max;<;<n h;.

Since the triangulation T}, is independent over the sub-domains, each side T';; = Q; N Q;
is provided with two different and independent 1-D meshes, denoted by 7y, (I';;) and Ty, (I';),
respectively. We define one of the sides of I';; as a mortar one, the other as a non-mortar one,
which are denoted by ~; and §;, respectively. The sets of vertices belonging to 0, Q;, 9Q;, 6,
7, 0; and K are denoted by Qp, Qi n, 00 n, O, Yi,n, 05, and Kj,, respectively.

Define the Adini nonconforming finite element space on sub-domain (2;:

Vii = Vai() = {v € L*() : v|x € P3(K) @ span{afzs, &123} for K € Th,
U, Uy, , Vg, are continuous at the vertices and
v(a) = vy, (a) = v,(a) =0, Ya € 0, NON}.

We can now introduce the global space ‘N/h :
~ N ~
Vi, = H Vh,i ()
i=1

with the so called broken H?2-seminorm:
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v]2,n = |v]2,n,0 = <Z|v|3,h,m> sl = DL e
=1

KETh;
Let W (d;) be the subspace of the space L*(T;;):
W((SJ) = {1} S Co(gj),v|?ﬁ6]_ S Pl(Fﬁ 6]'), VK € 77L]}



