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Abstract

We study the L
1-error estimates for the upwind scheme to the linear advection equa-

tions with a piecewise constant coefficients modeling linear waves crossing interfaces. Here

the interface condition is immersed into the upwind scheme. We prove that, for initial data

with a bounded variation, the numerical solution of the immersed interface upwind scheme

converges in L
1-norm to the differential equation with the corresponding interface condi-

tion. We derive the one-halfth order L
1-error bounds with explicit coefficients following a

technique used in [25]. We also use some inequalities on binomial coefficients proved in a

consecutive paper [32].
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1. Introduction

In this paper we study the L1-error estimates for the upwind difference scheme to the linear

advection equation

∂u

∂t
+ c(x)

∂u

∂x
= 0, t > 0, x ∈ R, (1.1)

u|t=0 = u0(x), (1.2)

with piecewise constant (without loss of generality, a step function in this paper) wave speed

c(x) =

{
c− x < 0,

c+ x > 0.
(1.3)

Without loss of generality, we assume c(x) > 0, which is the local sound speed of the media.

At the interface between two different media, c is discontinuous.

Eqs. (1.1)-(1.3) is the simplest case of a hyperbolic equation with singular coefficients. For

hyperbolic conservation laws with Lipschitz continuous coefficients, there were numerous works
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on convergence rate estimates for numerical methods. Half-order optimal convergence rates

for monotone type or viscosity type methods were established in [2, 24-27, 29]. In contrast,

for hyperbolic equations with singular coefficients, or conservation laws with discontinuous flux

functions, the convergence rate results for numerical methods are much less studied, although

many authors have studied the convergence of the numerical methods. The convergence studies

include the convergence of a front tracking method for conservation laws with discontinuous

flux functions [4], the convergence of front tracking schemes [3, 5, 18, 19], the Lax-Friedrichs

scheme [17] and convergence rate estimates for Godunov’s and Glimm’s methods [21, 28] for

the resonant systems of conservation laws, the convergence of monotone schemes for synthetic

aperture radar shape-from-shading equations with discontinuous intensities [23], the conver-

gence of a class of finite difference schemes for the linear conservation equation and the trans-

port equation with discontinuous coefficients [6], the convergence of a difference scheme, based

on Godunov or Engquist-Osher flux, for scaler conservation laws with a discontinuous convex

flux [30] and the extension to the nonconvex flux [31], the convergence of an upwind difference

scheme of Engquist-Osher type for degenerate parabolic convection-diffusion equations with a

discontinuous coefficient [16], the convergence of a relaxation scheme for conservation laws with

a discontinuous coefficient [15], the convergence of Godunov-type methods for conservation laws

with a flux function discontinuous in space [1], the convergence of upwind difference schemes of

Godunov and Engquist-Osher type for a scalar conservation law with indefinite discontinuities

in the flux function [22]. In the above cases, except for the resonant systems of conservation

laws, convergence rates for numerical methods were not studied.

One approach to treat Eqs. (1.1)-(1.3) is to use the equation on domains x < 0 and x > 0

respectively. Then one needs to provide an interface condition at x = 0 to connect the solutions

at the two sides of the interface. Once an appropriate interface condition is given, a unique

solution of (1.1)-(1.3) can be determined using the method of characteristics. See [12] for

the justification of the well-posedness of the Liouville equation with partial transmissions and

reflections using this approach in the case of a piecewise constant wave speed with a vertical

interface.

The physically relevant interface conditions for (1.1)-(1.3) are not necessarily unique [34].

For example, one can require that u is continuous across the interface,

u(0−, t) = u(0+, t). (1.4)

On the other hand, one can also assume that the flux cu is continuous across the interface,

c−u(0−, t) = c+u(0+, t). (1.5)

Depending on applications, (1.4) and (1.5) are both physically relevant interface conditions

being studied. See [34] for more detailed discussions.

A natural and successful approach for computing hyperbolic equations with singular coeffi-

cients is to build the interface condition into the numerical scheme. Many efficient numerical

methods have been designed using this technique. For example, we mention the immersed

interface methods by LeVeque and Li [20, 34].

For Eqs. (1.1)-(1.2) with a general c(x) including indefinite sign changes, the convergence of

a class of finite difference schemes to the duality solutions was proved in [6]. For Eqs. (1.1)-(1.3),

the duality solution is the one corresponding to the interface condition (1.4). To our knowledge,

no error bounds with explicit coefficients have been established for the upwind difference scheme


