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Abstract. We describe a numerical model to simulate the non-linear elasto-plastic dy-
namics of compressible materials. The model is fully Eulerian and it is discretized on
a fixed Cartesian mesh. The hyperelastic constitutive law considered is neohookean
and the plasticity model is based on a multiplicative decomposition of the inverse de-
formation tensor. The model is thermodynamically consistent and it is shown to be
stable in the sense that the norm of the deviatoric stress tensor beyond yield is non
increasing. The multimaterial integration scheme is based on a simple numerical flux
function that keeps the interfaces sharp. Numerical illustrations in one to three space
dimensions of high-speed multimaterial impacts in air are presented.
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1 Introduction

The numerical modelling of multimaterial rapid dynamics in extreme conditions is an im-
portant technological problem for industrial and scientific applications. Experiments are
dangerous, need heavy infrastructures and hence are difficult and expensive to realize.
The simulation of such phenomena is challenging because they couple large deforma-
tions and displacements in solids to strongly non-linear behaviour in fluids. In what fol-
lows, we privilege a fully Eulerian approach based on conservation laws, where the dif-
ferent materials are characterized by their specific constitutive laws. This approach was
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introduced in [10] and subsequently pursued and extended for example in [2, 9, 13, 19].
For specific applications, a Lagrangian approach like in [17] or [15] can be more suitable.

In this work we extend to elasto-plastic flows the schemes presented in [5, 11] for hy-
perelastic multimaterials. This scheme is based on a simple modification of the numerical
flux function at the multimaterial interface that allows an efficient code parallelization.
Thanks to this scheme, there is no need of defining a ghost fluid through the material
boundaries to avoid accuracy and stability issues. In addition, this interface remains
sharp.

Plasticity modelling is an open issue. The models are phenomenological and sev-
eral problematic points still need further investigation, see for example [20]. Here we
follow an established literature [1, 6, 12, 16, 18, 21, 22] where the deformation is viewed
as the composition of a purely elastic and a purely plastic mapping. This approach has
the advantage that plastic effects are modeled as a source term in the equation for the
elastic deformation tensor. Also, using appropriate constitutive equations for the plastic
phenomenon, it is possible to respect thermodynamic consistency (entropy is increasing)
and phenomenological constraints as volume invariance of the plastic flow. In particular,
we show here that with the plasticity model adopted in [18], the deviatoric stress tensor
norm is actually non increasing during the plastic process for the neohooken hyperelastic
model.

The applications we present are illustrations of the stiff phenomena occurring when
high speed projectiles impact on shields. These examples include a one-dimensional case
where we can compare the numerical results to an exact solution, a two-dimensional
impact on a plastic layer, two and three-dimensional impacts on framed plastic shields.

2 Eulerian hyperelastic model

This model was already discussed in [3, 8, 10, 19, 23, 24]. We follow here the formulation
presented in [5] and extend it to plasticity modelling. The equations of mass, momentum,
deformation and energy conservation are given by







∂tρ+divx(ρu)=0,

∂t(ρu)+divx(ρu⊗u−σ)=0,

∂t(∇xY)+∇x(u·∇xY)=0,

∂t(ρe)+divx(ρeu−σTu)=0.

(2.1)

The physical variables are the density ρ(x,t), the velocity u(x,t), the total energy per unit
mass e(x,t) and the Cauchy stress tensor in the physical domain σ(x,t). Here Y(x,t) is
the backward characteristics that for a time t and a point x in the deformed configuration,
gives the corresponding initial point in the initial configuration. The equation on ∇xY
is required in order to record the deformation in the Eulerian frame. The initial density
ρ(x,0), the initial velocity u(x,0), the initial total energy e(x,0) and ∇xY(x,0)= I are given
together with appropriate boundary conditions.


