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Abstract. A numerical time-stepping algorithm for differential or partial differential
equations is proposed that adaptively modifies the dimensionality of the underlying
modal basis expansion. Specifically, the method takes advantage of any underlying low-
dimensional manifolds or subspaces in the system by using dimensionality-reduction
techniques, such as the proper orthogonal decomposition, in order to adaptively rep-
resent the solution in the optimal basis modes. The method can provide significant
computational savings for systems where low-dimensional manifolds are present since
the reduction can lower the dimensionality of the underlying high-dimensional sys-
tem by orders of magnitude. A comparison of the computational efficiency and error
for this method are given showing the algorithm to be potentially of great value for
high-dimensional dynamical systems simulations, especially where slow-manifold dy-
namics are known to arise. The method is envisioned to automatically take advantage
of any potential computational saving associated with dimensionality-reduction, much
as adaptive time-steppers automatically take advantage of large step sizes whenever
possible.
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1. Introduction

Computation is ubiquitous across the physical, biological and engineering sciences, rev-
olutionizing many fields of study by allowing one to solve complex problems through algo-
rithmic/numerical methods. And with the continued and significant increase in computing
power for a fixed cost, even problems thought once to be intractable are now routinely
solved with high-performance computing architectures or even desktop/laptop computing.
The role of improved processor performance is unquestioned in helping to revolutionize
the impact of computational science. However, equally as important are the algorithmic
developments over the past few decades that have exploited any mathematical structure
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in the equations of interest to its full advantage. As an example, one needs only to consid-
er adaptive time-stepping algorithms that are applied to the solutions of differential and
partial differential equations. Such algorithms aim to take as large a time-step as possi-
ble while being constrained to some absolute or relative error measure. So prevalent are
these adaptive time-steppers that they are the standard, and expected, routines in most
high-level language packages such as MATLAB, Octave or Scipy. In a similar fashion, we
propose a simple and efficient adaptive time-stepping scheme where the dimensionality
of the underlying system is adapted in order to more efficiently solve a given differen-
tial or partial differential equation system. Although dimensionality reduction techniques
for ODEs and PDEs are well known (See [1, 2] and references therein), the method ad-
vocated here provides a new, natural framework for a fully adaptive, robust and general
time-stepping scheme which exploits optimal proper orthogonal decomposition (POD) ba-
sis modes whenever possible.

Dimensionality-reduction techniques, although around for more than a century [3–6],
have recently grown in importance for solving a wide range of physical problems. The
rise of such techniques often is related to the numerical discretization of PDE systems, for
instance, that can often yield a system of equations with millions or billions of degrees of
freedom (or more). Thus dimensionality reduction methods can form the underpinnings
of developing reduced-order models through projections such as the proper orthogonal
decomposition [1–9]. This manuscript aims to bring together well-known dimensionality
reduction and adaptive time-stepping schemes with the goal of producing an intuitively
appealing and natural, perhaps even obvious, time-stepping algorithm for differential and
partial differential equations that automatically takes advantage of any low-dimensional,
slow-manifold dynamics that exists in the system. Thus an adaptive time-stepping algo-
rithm is demonstrated where dimensionality reduction is exploited whenever possible in
an automated way. The basis of such a strategy is rooted in the vast literature on coher-
ent structures (low-dimensionality) that are observed to be prevalent in, for instance, PDE
systems across a broad range of the physical, biological and engineering sciences [16].
Indeed, some underlying low-dimensional and slow-manifold seems to be often exhibited
in the dynamics of high-dimensional dynamical systems.

Many other techniques have also been recently advocated with the aim of exploiting
some form of dimensionality reduction. In Schaeffer et al. [17] and Jokar et al. [18],
sparsity is exploited for minimizing the number of basis functions for evaluations of PDE.

By reducing or compressing the information needed to represent the solution at every
step, only the essential dynamics are represented. Thus the basis modes are not modi-
fied, they are simply turned on and off as necessary at each time-step. Alternatively, one
can capitalize on the newly developed dynamic mode decomposition (DMD) technique
which projects onto a lower modal basis and evolves the future state according to a lin-
ear set of differential equations [19]. Although dimensionality reduction is achieved, the
time-stepping equations are constrained to be linear. In yet another technique, an em-
pirical interpolation method (DEIM) [20, 21] provides a modification of the POD method
that reduces the complexity of evaluating the nonlinear terms of the reduced model to
a cost proportional to the number of reduced variables obtained by POD. However, no


