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Abstract. The accurate simulation of disperse two-phase flows, where a discrete par-
ticulate condensed phase is transported by a carrier gas, is crucial for many applica-
tions; Eulerian approaches are well suited for high performance computations of such
flows. However when the particles from the disperse phase have a significant inertia
compared to the time scales of the flow, particle trajectory crossing (PTC) occursi.e. the
particle velocity distribution at a given location can become multi-valued. To properly
account for such a phenomenon many Eulerian moment methods have been recently
proposed in the literature. The resulting models hardly comply with a full set of de-
sired criteria involving: 1- ability to reproduce the physics of PTC, at least for a given
range of particle inertia, 2- well-posedness of the resulting set of PDEs on the chosen
moments as well as guaranteed realizability, 3- capability of the model to be associated
with a high order realizable numerical scheme for the accurate resolution of particle
segregation in turbulent flows. The purpose of the present contribution is to introduce
a multi-variate Anisotropic Gaussian closure for such particulate flows, in the spirit
of the closure that has been suggested for out-of-equilibrium gas dynamics and which
satisfies the three criteria. The novelty of the contribution is three-fold. First we derive
the related moment system of conservation laws with source terms, and justify the use
of such a model in the context of high Knudsen numbers, where collision operators
play no role. We exhibit the main features and advantages in terms of mathematical
structure and realizability. Then a second order accurate and realizable MUSCL/HLL
scheme is proposed and validated. Finally the behavior of the method for the descrip-
tion of PTC is thoroughly investigated and its ability to account accurately for inertial

particulate flow dynamics in typical configurations is assessed.

*Corresponding author. Email addresses: aymeric.vie@stanford.edu, aymeric.vie@ecp.fr (A.Vié),
francois.doisneau@ecp.fr (F. Doisneau), marc.massot@ecp.fr (M. Massot)

JrPresently at CTR, Stanford University, formerly postdoctoral fellow at EM2C Laboratory (2011-2013).
HVisiting Professor at Stanford University, CTR (2011-2012).

http:/ /www.global-sci.com/ 1 (©2015 Global-Science Press



2 A.Vié etal. / Commun. Comput. Phys., 17 (2015), pp. 1-46

AMS subject classifications: 76T10, 76P05, 82C21, 65MO08, 35140, 52B55

Key words: Particulate flows, kinetic theory, moment method, particle trajectory crossing.

1 Motivation and objective

Two-phase flows constituted of a gaseous phase carrying a disperse condensed phase
play a key role in many industrial and scientific applications e.g. spray combustion in
Diesel engines or aeronautical combustors, soot dynamics, fluidized beds. In all these
applications the disperse phase is composed of particles/droplets of various sizes that
can possibly coalesce or aggregate, break-up, evaporate and have their own inertia and
size-conditioned dynamics.

To describe the disperse phase, many strategies can be envisioned. In the present
work, we consider the dynamics of the particulate phase in a statistical sense using a
kinetic approach and we describe it using a Number Density Function (NDF). The NDF
measures an ensemble average (over a given set of initial conditions) number of particles
at a specific location in the phase space. The phase space is determined by the number
of internal coordinates that describe the particle state: position, velocity, size, temper-
ature, etc.. These variables evolve due to physical phenomena: transport, drag force,
evaporation, heating, efc.. which are accounted for through a Williams-Boltzmann Equa-
tion (WBE) [76], also called a Generalized Population Balance Equation (GPBE) in other
scientific communities (chemical engineering, aerosol science).

There are several strategies to solve this kinetic equation: a direct resolution in the full
phase space through deterministic methods is too expensive and beyond reach in most
practical cases. A second choice is to approximate the NDF by a sample of discrete nu-
merical parcels describing particles of various internal coordinates through a Lagrangian-
Monte-Carlo approach [1,25,37,56]. It is called Direct Simulation Monte-Carlo method
(DSMC) in [8] and is generally considered to be the most accurate method for solving this
type of WBE; it is specially suited for direct numerical simulations (DNS) on canonical
configurations since it does not introduce any numerical diffusion. However, the number
of parcels required to achieve a satisfactory statistical convergence comes to be high in
3D cases, especially when a high number of internal coordinates is required, and such an
approach is no longer suitable for practical applications.

To overcome this limitation, Macroscopic Eulerian Moment Methods offer a promis-
ing alternative. Instead of solving the NDF itself, the WBE is integrated over selected
dimensions of the phase space, including in particular velocity [19,40]. Moment equa-
tions are obtained with a new phase space of reduced dimension, for which deterministic
methods of discretization are affordable and efficient. The coordinate of the phase space
which is the most essential to deal with is the velocity, because it will drive the spatial
distribution of particles. Thus in the following we will focus on distributions which are
monodisperse in all variables except velocity. Additional dimensions of the phase space



