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Abstract. In this paper we propose a general framework for the uncertainty quan-
tification of quantities of interest for high-contrast single-phase flow problems. It is
based on the generalized multiscale finite element method (GMsFEM) and multilevel
Monte Carlo (MLMC) methods. The former provides a hierarchy of approximations of
different resolution, whereas the latter gives an efficient way to estimate quantities of
interest using samples on different levels. The number of basis functions in the online
GMsFEM stage can be varied to determine the solution resolution and the computa-
tional cost, and to efficiently generate samples at different levels. In particular, it is
cheap to generate samples on coarse grids but with low resolution, and it is expen-
sive to generate samples on fine grids with high accuracy. By suitably choosing the
number of samples at different levels, one can leverage the expensive computation in
larger fine-grid spaces toward smaller coarse-grid spaces, while retaining the accuracy
of the final Monte Carlo estimate. Further, we describe a multilevel Markov chain
Monte Carlo method, which sequentially screens the proposal with different levels of
approximations and reduces the number of evaluations required on fine grids, while
combining the samples at different levels to arrive at an accurate estimate. The frame-
work seamlessly integrates the multiscale features of the GMsFEM with the multilevel
feature of the MLMC methods following the work in [26], and our numerical experi-
ments illustrate its efficiency and accuracy in comparison with standard Monte Carlo
estimates.
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1 Introduction

Uncertainties in the description of reservoir lithofacies, porosity and permeability are
major contributors to the uncertainties in reservoir performance forecasting. The un-
certainties can be reduced by integrating additional data, especially dynamic ones such
as pressure or production data, in subsurface modeling. The incorporation of all avail-
able data is essential for the reliable prediction of subsurface properties. The Bayesian
approach provides a principled framework for combining the prior knowledge with dy-
namic data in order to make predictions on quantities of interest [24]. However, it poses
significant computational challenges largely due to the fact that exploration of the poste-
rior distribution requires a large number of forward simulations. High-contrast flow is a
particular example, where the forward model is multiscale in nature and only a limited
number of forward simulations can be carried out before becoming prohibitively expen-
sive. In this paper, we present a framework for uncertainty quantification of quantities of
interest based on the generalized multiscale finite element method (GMsFEM) and multi-
level Monte Carlo (MLMC) methods. The GMsFEM provides a hierarchy of approxima-
tions to the solution, and the MLMC provides an efficient way to estimate quantities of
interest using samples on multiple levels. Therefore, the framework naturally integrates
the multilevel feature of the MLMC with the multiscale nature of the high-contrast flow
problem.

Multiscale methods represent a class of coarse-grid solution techniques that have gar-
nered much attention over the past two decades (see, e.g., [1, 2, 16, 22, 23, 25]). They all
hinge on the construction of a coarse solution space that is spanned by a set of multiscale
basis functions. In this paper we follow the framework of the Multiscale Finite Element
Method (MsFEM) [22] in which the basis functions are independently pre-computed,
and are obtained through solving a set of local problems that mimic the global opera-
tor, in the hope of capturing the fine scale behavior of the global system. Then a global
formulation is used to construct a reduced-order solution. While standard multiscale
methods have proven very effective for a variety of applications [13, 14, 16, 20], recent
work has offered a generalized framework for enriching coarse solution spaces in case
of parameter-dependent problems, where the parameter reflects the uncertainties of the
system. Specifically, the GMsFEM is a robust solution technique in which the standard
solution spaces from the MsFEM may be systematically enriched to further capture the
fine behavior of the fine grid solution [3,11,12]. The additional basis functions are chosen
based on localized eigenvalue problems.

The GMsFEM achieves efficiency via coarse space enrichment, which is split into two
stages, following an offline-online procedure (see also [6,8,28,30]). At the first stage of the
computation, a larger-dimensional (relative to the online space) parameter-independent
offline space is formed. The offline space accounts for a suitable range of parameter val-
ues that may be used in the online stage, and constitutes a one-time preprocessing step.
The offline space is created by first generating a set of “snapshots” in which a number
of localized problems are solved on each coarse subdomain for a number of parameter


