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Abstract. In this paper, we develop a novel energy-preserving wavelet collocation
method for solving general multi-symplectic formulations of Hamiltonian PDEs. Based
on the autocorrelation functions of Daubechies compactly supported scaling functions,
the wavelet collocation method is conducted for spatial discretization. The obtained
semi-discrete system is shown to be a finite-dimensional Hamiltonian system, which
has an energy conservation law. Then, the average vector field method is used for
time integration, which leads to an energy-preserving method for multi-symplectic
Hamiltonian PDEs. The proposed method is illustrated by the nonlinear Schrödinger
equation and the Camassa-Holm equation. Since differentiation matrix obtained by
the wavelet collocation method is a cyclic matrix, we can apply Fast Fourier transform
to solve equations in numerical calculation. Numerical experiments show the high
accuracy, effectiveness and conservation properties of the proposed method.
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1 Introduction

A numerical method which can preserve one or more physical/geometric properties of
the system exactly is called geometric or structure-preserving integrators. As geometric
integration has gained remarkable success in the numerical analysis of ODEs [1, 2], it is
believable to extend the idea of geometric integration to significant PDEs. Many con-
servative PDEs, for instance the sine-Gordon (SG) equation, the nonlinear Schrödinger
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(NLS) equation, the Korteweg-de Vries (KdV) equation, the Camassa-Holm (CH) equa-
tion, the Maxwell’s equations and so on can be rewritten as multi-symplectic Hamil-
tonian system, which has the properties of multi-symplectic structure, energy and mo-
mentum conservation laws [3–5]. To inherit the multi-symplectic structure, many multi-
symplectic methods [6–9] are developed in recent years. For more details in applications,
please refer to review articles [10,11] and references therein. Except the multi-symplectic
conservation law, multi-symplectic Hamiltonian system also has the energy conserva-
tion law. The conservation of energy is a crucial property of mechanical systems and
plays an important role in the study of properties of solutions [12, 13]. It is valuable to
expect that energy-preserving discretizations for conservative PDEs will produce richer
information on the discrete systems. Li and Vu-Quoc [14] gave a historical survey of
energy-preserving methods for PDEs and their applications, especially to nonlinear sta-
bility. Energy-preserving methods [15–19] have successfully made many applications.
However, these methods have an ad hoc character and are not completely systematic ei-
ther in their derivation or in their applicability; in contrast, our method discussed here is
completely systematic, applied to a huge class of conservation PDEs.

Recently, wavelet-based numerical methods become increasingly popular as they com-
bine the advantages of both spectral method and finite difference method (FDM) [20–
22]. Compared with spectral method, wavelet-based methods have good spatial local-
ization and generate a sparse space differentiation matrix, and compared with FDM,
wavelet-based methods have good spectral localization and higher order of accuracy. The
wavelet-based algorithms can be roughly classified into two categories: wavelet-Galerkin
and wavelet collocation. In [23] and [24], Daubechies’ compactly supported orthogo-
nal wavelets and second-generation wavelets are proposed to combine with symplectic
schemes to construct multiresolution symplectic solvers for wave propagation problems
and the method is of wavelet-Galerkin type. However, it is very difficult to deal with non-
linear problems, as it needs the passage between wavelet coefficients and physical space.
In order to overcome this difficulty, a wavelet collocation method is proposed in [25],
in which the autocorrelation functions of Daubechies compactly supported scaling func-
tions are shown to have the merits of symmetry and nice interpolation properties, and so
no extra computation is required for the passage between wavelet coefficients and phys-
ical space. Based on the autocorrelation functions of Daubechies compactly supported
scaling functions, the symplectic wavelet collocation method and the multi-symplectic
wavelet collocation method are developed for Hamiltonian PDEs with periodic bound-
ary conditions in [26] and [27], respectively, in which numerical experiments illustrate
the remarkable behavior of the methods.

The average vector field (AVF) method is first written down in [28] and identified as
energy-preserving and as a B-series method in [29]. For ordinary differential equation

ẏ= f (y), y∈R
d, (1.1)


