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Abstract. In this paper we consider a discontinuous Galerkin discretization of the
ideal magnetohydrodynamics (MHD) equations on unstructured meshes, and the di-
vergence free constraint (∇·B = 0) of its magnetic field B. We first present two ap-
proaches for maintaining the divergence free constraint, namely the approach of a lo-
cally divergence free projection inspired by locally divergence free elements [19], and
another approach of the divergence cleaning technique given by Dedner et al. [15]. By
combining these two approaches we obtain a efficient method at the almost same nu-
merical cost. Finally, numerical experiments are performed to show the capacity and
efficiency of the scheme.
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1 Introduction

Many physical problems arising in a modeling process can be described by the magne-
tohydrodynamic (MHD) equations which model the dynamics of electrically conduct-
ing fluids (e.g. plasma). At high temperature due to ionization, all gases will change
to plasma. Therefore the MHD equations are important in many physical applications.
Since the equations are highly nonlinear, analytic solutions are not available for the prob-
lem. We will focus on the numerical solutions of the ideal MHD equations, represented
by an hyperbolic conservation law. Also, an additional involution constraint ∇·B=0 for
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its magnetic field B is needed. Besides the numerical challenges when solving such a
nonlinear system, this constraint introduces additional difficulties. On the analytic level
the involution constraint is always fulfilled, but numerical experiments indicate that neg-
ligence in dealing with the divergence constraint may lead to numerical instability and
nonphysical solutions.

Many numerical approaches have been developed to solve conservation laws, e.g.
finite volume method (FVM) and finite element method (FEM). Each of them has its ad-
vantages and disadvantages. We will focus on the discontinuous Galerkin (DG) method,
which combines the flexibility of FEM with the numerical fluxes from FVM. The DG
method uses piecewise basis functions which are discontinuous on the boundary of the
elements. Normally they are chosen to be piecewise polynomials. Due to the disconti-
nuity of the basis function across cell boundaries, the scheme is very flexible compared
to standard continuous finite element method, such as its ability to deal with arbitrary
unstructured grids with hanging nodes. Additionally, each cell can have its own polyno-
mial degree independent of its neighbors. Furthermore, the DG scheme admits extremely
local data structure (elements only communicate with its immediate neighbors) which
leads to high parallel efficiency.

The first discontinuous Galerkin method was introduced by Reed and Hill [28] in
1973. They were interested in the neutron transport problem, i.e. a time independent
linear hyperbolic equation. In a series of papers [9–13] Cockburn and Shu developed a
framework to solve nonlinear time dependent problems, like Euler or MHD equations.
For time integration they are using explicit, nonlinearly stable high order Runge-Kutta
time discretizations [30] and for the spatial DG discretization they apply exact or approx-
imate Riemann solvers as interface numerical fluxes. To avoid numerical ascillations near
shocks they suggested to apply total variation bounded nonlinear limiters [29]. Due to
its good properties, such as high order accuracy and parallel efficiency, the discontin-
uous Galerkin method has found rapid applications in diverse areas as aeroacoustics,
electro-magnetism, gas dynamics and many more. Several numerical results establish
the good convergence behavior and reveal an excellent level of details in numerical runs,
see e.g. [1].

With regards to the numerical influence of the divergence constraint, several mod-
ifications and ideas have been developed to satisfy the constraint or at least reduce the
negative impact on the numerical solution. One of the first persons to notice the impact of
nonzero divergence to the stability of the numerical schemes were Brackbill and Barnes.
In [5], they proposed a global projection method to stabilize their scheme. The projection
needs to solve a global elliptic partial differential equation at each time step.

Another approach is given by Powell [25, 27]. The derivation of one-dimensional
fluxes (for a finite volume scheme) is based on the symmetrizable form of the MHD equa-
tions. In order to symmetrize MHD, we have to add source terms proportional to ∇·B,
see [26]. It was discovered later that the robustness of a MHD code can be improved
by adding these so called Powell-source term, see [34]. In 2002 Dedner et al. [15] in-
troduced their hyperbolic divergence cleaning technique which has several advantages


