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Abstract. In this paper we consider the relaxation limits of the two-fluid Euler-Maxwell
systems with initial layer. We construct an asymptotic expansion with initial layer
functions and prove the convergence between the exact solutions and the approximate
solutions.
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1 Introduction

In this paper, we consider the three-dimensional two-fluid (including electrons and ions)
Euler-Maxwell equations in a torus T=(R/Z)3 :

Orny+div(ngu,) =0, (1.1)
My [0 (nytty ) +div(ngu, @uy)|+Vp(ng) =gang(E+uy X B) — %:u“, (1.2)
eatE—£V><B:neue—niui, (1.3)
9B+V xE=0, (1.4)
edivE=n;—n,, divB=0, (1.5)

where a =e¢,i, g;=1, 9. = —1; n. and n; stand for the density of the electrons and ions; u,
and u; stand for the velocity of the electrons and ions; E and B are respectively the electric
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field and magnetic field; p = p(n,) is the pressure function which is sufficiently smooth
and strictly increasing for n, > 0. These variables are functions of a three-dimensional
position vector x € T and of the time ¢ > 0. In the above systems the physical parameters
are the electron mass m, and the ion mass m;, the momentum relaxation times 7, and T,
and the permittivity € and the permeability p.

For simplicity, we denote m, =1, ¢,y =1 and 7. = 7; = T, then we obtain the following
systems:

orny +div(ngu,) =0, (1.6)

Ot (nyuy) +div(ngu, @uy ) +Vp(ng) =gang(E4uy X B) — @, (1.7)
n

0tE—V xB=n.u,—nu;, divE=n;—n,, (1.8)

3B+VxE=0, divB=0. (1.9)

Furthermore, we make the time scaling by replacing t by £ and define the enthalpy
function (n,) by
Ny !
h(ng) = flgfzds. (1.10)
1

So the system we considered is rewritten the following reduced two-fluid Euler-
Maxwell systems:

1
Btn,x-l—;div(nau,x) =0, (1.11)
1 1 E B
Bttt 2 (- Yty 2 V() = LU ET e X B) e, (1.12)
T T T T
1 —
WE— -V x B=elle 7 Mli - 4i0F —n;—n,, (1.13)
T T
1
UB+_VxE=0, divB=0, (1.14)
with initial data:
(na,u“,E,B) ’t:O = <n;,0/uZIO/EE)[/Bg)' (115)

The study of compressible Euler-Maxwell equations began in 2000, Chen, Jerome and
Wang [1] prove the existence of global weak solutions of the simplified Euler-Maxwell
equations by using the method of step by step Godunov scheme combined with compen-
sated compactness; in 2007 and 2008, Peng and Wang [2,3] study the non relativistic limit
convergence problem for compressible Euler-Maxwell equations to compressible Euler-
Poisson equations and the composite limits of the quasi neutral limit and the non rela-
tivistic limit for compressible Euler-Maxwell equations; Peng, Wang and Gu [4] discuss
the relaxation limit of compressible Euler-Maxwell equations and the existence of global
smooth solution in 2011; in the same year, Wang, Yang and Zhao [5] research the relax-
ation limit of the plasma two-fluid Euler-Maxwell equations with the help of Maxwell



