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Abstract. This paper investigates a solution technique for solving a two-dimensional
Kuramoto-Sivashinsky equation discretized using a finite difference method. It con-
sists of an order reduction method into a coupled system of second-order equations,
and to formulate the fully discretized, implicit time-marched system as a Lyapunov-
Sylvester matrix equation. Convergence and stability is examined using Lyapunov
criterion and manipulating generalized Lyapunov-Sylvester operators. Some numeri-

cal implementations are provided at the end to validate the theoretical results.
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1 Introduction

Kuramoto-Sivashinsky (KS) equation is one of the well known models for for chaotic
spatially extended systems [9]. The KS equation arises in the description of stability of
flame fronts, reaction-diffusion systems and many other physical settings [10, 12]. Sim-
ilarly to [20], in the context of the present paper the two-dimensional generalized KS
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equation describes the evolution of a (2+1)-dimensional surface defined as a function
on a two-dimensional plane and is growing in the direction perpendicular to that plane.
Therefore, the present paper is devoted to the development of a computational method
based on two-dimensional finite difference scheme to approximate the solution of the
nonlinear KS equation
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on a rectangular domain Q= [Lg,L1] x [Lo,L1] in R?, tx >0 is a real parameter fixed as the
initial time. % is the time derivative, V is the space gradient operator and A = ax2 —|—

is the Laplace operator in R?, g,k,A are real parameters. ¢ and y are twice differentlable
real valued functions on ().

We propose to apply an order reduction of the derivation and thus to solve a coupled
system of equation involving second order differential operators. We set v=qu—xAu and
thus we have to solve the system
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The Kuramoto-Sivashinsky equation (KS) is one of the most famous equations in math-
physics for many decades. It has its origin in the work of Kuramoto since the 70-th decade
of the 20-th century in his study of reaction-diffusion equation [21]. The equation was
then considered by Sivashinsky in modeling small thermal diffusion instabilities for lam-
inar flames and modeling the reference flux of a film layer on an inclined plane [32, 33].
Since then the KS equation has experienced a growing development in theoretical mathe-
matics, numerical as well as physical mechanics, nonlinear physics, hydrodynamics [28],
in combustion theory, chemistry, plasma physics, particle distributions advection, surface
morphology, ...etc.

For example, in [1], an anisotropic version of the KS equation has been proposed lead-
ing to global resolutions of the equation on rectangular domains. Sufficient conditions
were given for the existence of global solution. See for example [6-13].



