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Abstract. The exact Riemann solver for one-dimensional elastic-perfectly plastic solid
has been presented in the previous work [S. Gao and T. G. Liu, Adv. Appl. Math.
Mech., 9(3), 2017, 621-650], but its iterative process of finding nonlinear equation solu-
tion is time-consuming. In this paper, to enhance the computational efficiency of the
exact Riemann solver and provide a more practical Riemann solver for actual imple-
mentation, we design a non-iterative solution structure-based adaptive approximate
(SSAA) Riemann solver for one-dimensional elastic-perfectly plastic solid. Judging the
solution structure adaptively and then solving the Riemann problem with correspond-
ing solution structure non-iteratively can shorten the computing time and meanwhile
guarantee the correctness of the final result. Numerical performance tests manifest
that the exact Riemann solver is indeed time-consuming and the ordinary approximate
Riemann solver with fixed three-wave solution structure is of great error, whereas the
SSAA Riemann solver is of both efficiency and accuracy. Error estimation further in-
dicates that the SSAA Riemann solver has at least second-order accuracy to approach
the exact solution of the states in the star region.
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1 Introduction

In the current computational fluid dynamic (CFD) field, various Riemann solvers have
been widely adopted in the Godunov-type scheme [1–5] to predict numerical fluxes and
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in the ghost fluid-type method [6–12] to define ghost fluid states. Among them, the ex-
act Riemann solver [13] is the most fundamental one, which judges the solution type
firstly and then utilizes the bisection method or Newton-Raphson method to iterate the
root of nonlinear equation regarding to the pressure in the star region. However, this
iteration process is rather time-consuming especially when the exact Riemann solver is
invoked frequently. For that reason, researchers prefer to employ approximate Riemann
solvers rather than utilize the exact one in practical implementation. Hence, a number
of approximate Riemann solvers have been designed in different ways to speed up the
solving procedure as much as possible, under the premise that the numerical result is ac-
ceptable. But, there is an underlying designing principle of these approximate Riemann
solvers, which is that their solution structures all largely depend on the exact solution
structure of the specific Riemann problem.

For one-dimensional compressible fluid Riemann problem, it is acknowledged that
its exact solution structure is typically three-wave. Thus a reasonable solution struc-
ture of the approximate Riemann solver should be three-wave as well. Following this
thought, three-wave iterative approximate Riemann solvers like double-rarefaction Rie-
mann solver, double-shock Riemann solver and their variants [14] can be easily derived
from the exact Riemann solver. The superiority of these iterative three-wave approximate
Riemann solvers is that they can skip the judgement of solution type, which is a necessary
step in the exact Riemann solver. However, the deficiency is that they still need the itera-
tive process to locate the root of nonlinear equation regrading to the pressure in the star
region. To further develop a three-wave approximate Riemann solver without iteration,
the primitive variable Riemann solver (PVRS) [15] was proposed. PVRS is constructed
by the linearized characteristic equations in terms of the primite variable hyperbolic sys-
tem. It owns outstanding performance on computation efficiency and is able to compute
numerical results much more rapidly than the fore-mentioned iterative approximate Rie-
mann solvers. Besides the PVRS, there is another frequently-used non-iterative approxi-
mate Riemann solver, the HLL (Harten-Lax-van Leer) Riemann solver [16]. It can predict
the numerical flux directly without needing to calculate the states in the star region in
advance. But it should be noted that the solution structure of HLL Riemann solver is
only two-wave, where the linear degenerated contact discontinuity is omitted. Such a
simplification on solution structure causes the HLL Riemann solver tending to introduce
a relatively large error when calculates the states in the star region. And when the HLL
Riemann solver is applied in the Godunov-type method, its simulation result inclines to
give obvious numerical dissipations near the contact discontinuity in the density profile
owing to its imperfect solution structure. To compensate this offset, the effect of con-
tact discontinuity has to be taken into account and a three-wave non-iterative HLLC (C
standing for the Contact discontinuity) approximate Riemann solver [17] was put for-
ward. Hence, from the above construction manner of approximate Riemann solvers for
the compressible fluid, it can be found that a high-accuracy approximate Riemann solver
should ensure its solution structure is uniform with the exact solution structure and any
simplification on the solution structure (for example, the two-wave simplification of the


