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Abstract

In this paper, a fully discrete scheme based on the L1 approximation in temporal

direction for the fractional derivative of order in (0, 1) and nonconforming mixed finite

element method (MFEM) in spatial direction is established. First, we prove a novel result

of the consistency error estimate with order O(h2) of EQrot

1 element (see Lemma 2.3).

Then, by using the proved character of EQrot

1 element, we present the superconvergent

estimates for the original variable u in the broken H1-norm and the flux ~p = ∇u in the

(L2)2-norm under a weaker regularity of the exact solution. Finally, numerical results are

provided to confirm the theoretical analysis.
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1. Introduction

Consider the following time-fractional diffusion equations(TFDEs):
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
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



C
0 D

α
t u−∆u = f(X, t), (X, t) ∈ Ω× (0, T ],

u(X, t) = 0, (X, t) ∈ ∂Ω× (0, T ],

u(X, 0) = u0(X), X ∈ Ω,

(1.1)

where Ω ⊂ R
2 is a bounded convex domain with boundary ∂Ω, X = (x, y), T < ∞, u0(X) and

f(X, t) are given smooth functions and C
0 D

α
t is Caputo fractional derivative defined by

C
0 D

α
t u(X, t) =

1

Γ(1− α)

∫ t

0

∂u(X, s)

∂s

ds

(t− s)α
, 0 < α < 1.

TFDEs, which may describe many physical phenomena in enginering, biology, chemistry,

physics and so forth, were derived from the standard diffusion equation by replacing the first-

order time derivative with a fractional derivative of order α (0 < α < 1) that represents a

degree of memory in the diffusing meterial [1]. Numerous effort has been devoted to math-

ematical study of different fractional equations in two branches in the past several decades.
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One is to find the analytical solutions [1-4] and the other is to seek numerical approximation

methods. We refer to [5-16] for finite difference methods, [17-25] for FEMs, [26-29] for spectral

methods, [30-32] for DG methods, [33-34] for MFEMs, [35] for adaptive FEM, and so forth.

Except for the theoretical analysis, another essential difficulty for time fractional PDEs is the

computational cost and storage, especially for the long time simulations of the 2-D and 3-D

cases. This requires a fast algorithm to reduce the computational complexity significantly, and

keep the almost same accuracy comparing with the direct methods, one can see [36, 37, 38] and

references therein.

As we know, superconvergence analysis which aims at improving the accuracy and efficiency

of FEMs, has been well studied for TFDEs. For example, [39] analysed a piecewise-linear DG

method for a kind of fractional diffusion and wave equations, and proved the superconvergent

properties at the element’s nodes for the classical heat equation. [40] investigated superconver-

gence properties of the spectral interpolation involving fractional derivatives. In [41], optimal

collocation nodes for fractional derivative operators were examined. In [42], by the L1 method

in time (also see [24, 25, 27, 43, 44]) combined with quasi-Wilson nonconforming finite elemen-

t in space for Eq. (1.1), the superclose and superconvergent results in the broken H1-norm

were obtained. As for MFEMs, [45] studied an H1-Galerkin FEM for Eq.(1.1) in 1-D, and

derived the convergent result of O(∆t2−α + hr+1∆t−α + hr+1) in L2-norm for a fully-discrete

scheme. Moreover, [46] developed two fully-discrete schemes for Eq. (1.1) with bilinear finite

element and EQrot
1 nonconforming element, respectively. The superclose and superconvergent

error estimates of order O(h2 + τ2−α) for both the original variable u in the H1-norm and the

flux ~p = ∇u in the L2-norm were derived for bilinear element. However, only optimal error

estimates were deduced for EQrot
1 element. The main reason is that the consistency error of

this element is only estimated as

∑

K

∫

∂K

∂u

∂~n
vhds ≤ Ch2|u|3‖vh‖1,h ≤ Ch|u|3‖vh‖0,

Here vh belongs to EQrot
1 finite element space (see [47-49]).

As an attempt, the main aim of this paper is to present the superconvergent estimates for

Eq.(1.1) with nonconforming MFEM under a weaker regularity of the solutions. The key to

our proof is a novel estimate:

∑

K

∫

∂K

∂u

∂~n
vhds ≤ Ch2|u|4‖vh‖0,

which improves the corresponding conclusion obtained in [50], i.e.,

∑

K

∫

∂K

∂u

∂~n
vhds ≤ Ch2|u|5‖vh‖0.

Obviously the regularity of u ∈ H5(Ω) is weaken to u ∈ H4(Ω), which improves the results of

optimal error estimates in [46] to the superconvergent estimates herein.

The rest of the paper is organized as follows. In Section 2, the nonconforming MFEs and

some useful Lemmas are introduced. In Section 3, a fully discrete scheme is established and the

superconvergent results are obtained. In the last section, some numerical results are provided

to confirm our theoretical analysis.


