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Abstract. A nonlinear finite volume element scheme for anisotropic diffusion prob-
lems on general triangular meshes is proposed. Starting with a standard linear con-
forming finite volume element approximation, a corrective term with respect to the
flux jumps across element boundaries is added to make the scheme satisfy the dis-
crete maximum principle. The new scheme is free of the anisotropic non-obtuse angle
condition which is a severe restriction on the grids for problems with anisotropic dif-
fusion. Moreover, this manipulation can nearly keep the same accuracy as the original
scheme. We prove the existence of the numerical solution for this nonlinear scheme
theoretically. Numerical results and a grid convergence study are presented for both
continuous and discontinuous anisotropic diffusion problems.
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1 Introduction

We are concerned with the numerical solution of the diffusion equation:

−∇·(Λ∇u)= f in Ω, (1.1)

u= g on ∂Ω, (1.2)

where
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(a) Ω is an open bounded, convex connected polygonal domain in R
2 with the boundary

∂Ω;

(b) f is the source term, belonging to L2(Ω);

(c) g is the Dirichlet boundary data defined on ∂Ω;

(d) Λ is a symmetric tensor such that Λ is piecewise Lipschitz-continuous on Ω and the
set of eigenvalues of Λ is included in [λmin,λmax] with λmin>0.

The boundary value problem (BVP) (1.1)-(1.2) becomes an anisotropic diffusion prob-
lem if eigenvalues of Λ are not all equal at least on a portion of Ω. This kind of problem
is a model arising in various fields such as plasma physics [19, 33], petroleum reservoir
simulation [17], and image processing [38]. As typical for diffusion problems, it satisfies
the maximum principle

min
x∈Ω∪∂Ω

u(x)≥ min
x∈∂Ω

g(x) (1.3)

provided that f (x)≥ 0 holds for all x ∈ Ω. When using a standard numerical method,
such as a finite element, a finite difference, or a finite volume method, to solve this prob-
lem, spurious oscillations may occur. In order to avoid such spurious oscillations in the
numerical solution, a common strategy is to develop numerical schemes guaranteeing
the discrete counterpart of (1.3), i.e., the so-called discrete maximum principle (DMP),
which are known to produce numerical solutions evading nonphysical local oscillations
or preserving positivity.

Development of DMP satisfaction schemes for solving diffusion problems has at-
tracted considerable interest in the past. By virtue of the convex combination of two
linear flux approximation and the positivity-preserving interpolation of the auxiliary un-
knowns, various cell-centered finite volume (FV) schemes circumventing spurious oscil-
lations have been developed. These schemes usually have approximately a second-order
accuracy on severely distorted meshes in the highly anisotropic, and/or discontinuous
case. However, their extensions to finite element (FE) methods are hard to succeed. We
refer readers to [1, 16, 18, 28, 30, 34, 39, 40] and references therein for more details. In the
framework of FE methods, the study of DMP-preserving schemes for anisotropic diffu-
sion case is more difficult and relevant results are very limited. In [27], the authors derive
an anisotropic non-obtuse angle condition in term of the M-matrix criteria, such that
the linear FE scheme guarantees the DMP by employing a suitable mesh. On the other
hand, separating the stiffness matrix resulting from the FE discretization into diffusive
and anti-diffusive fluxes and limiting the anti-diffusion fluxes by proper limiters lead to
the so-called algebraic flux correction scheme. In [23] and [24], the authors propose two
types of limiters to make the corrected schemes local extremum diminishing. But they
are linearity-preserving only on symmetric meshes, as pointed out in [2].

Finite volume element (FVE) method [12,13,30,31], also called co-volume method [15]
or generalized difference method [29], is one of the main numerical methods for solving


