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Abstract

In this paper, a linear implicit L1-Legendre Galerkin Chebyshev collocation method for

the generalized time- and space-fractional Burgers equation is developed. A linear implicit

finite difference scheme based on the L1-algorithm for the Caputo fractional derivative is

proposed for temporal discretization. And the Legendre Galerkin Chebyshev collocation

method, based on the Legendre-Galerkin variational form, but the nonlinear term and

the right-hand term are treated by Chebyshev-Gauss interpolation, is proposed for spa-

tial discretization. Rigorous stability and convergence analysis are developed. Numerical

examples are shown to demonstrate the accuracy, stability and effectiveness of the method.
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1. Introduction

In this paper, we consider the following generalized Burgers equation with time- and space-

fractional derivatives of the form [12,27]:
∂αU
∂tα + εU ∂U

∂x − ν
∂2U
∂x2 + η ∂

βU
∂xβ

= g(x, t), (x, t) ∈ (−1, 1)× (0, T ],

U(x, t) = 0, (x, t) ∈ R\(−1, 1)× [0, T ],

U(x, 0) = U0(x), x ∈ (−1, 1),

(1.1)

where ε, ν > 0, η > 0 are parameters and 0 < α, β < 1 are parameters describing the order of

the fractional time- and space-derivatives, respectively. The function U(x, t) is assumed to be

a causal function of time and space. The function g(x, t) is a source term. Here, the fractional

derivatives are considered in the Caputo sense, i.e.,

∂αU(x, t)

∂tα
:= C

0 D
α

t U(x, t) =
1

Γ(1− α)

∫ t

0

∂U(x, s)

∂s

ds

(t− s)α
, (1.2)

∂βU(x, t)

∂xβ
:= C
−1D

β

x
U(x, t) =

1

Γ(1− β)

∫ x

−1

∂U(y, t)

∂y

dy

(x− y)β
, (1.3)
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where Γ(·) is the Euler’s Gamma function (see, e.g., [16]). (1.1) is referred to as the time-

fractional Burgers and the space-fractional Burgers equation in the cases 0 < α < 1, η = 0 and

0 < β < 1, α = 1, respectively.

As suggested in [4], a well-posed fractional differential equation (FDE) with space fractional

derivative operator on a bounded domain must also specify the value of the solution at points

exterior to the domain, not just at the boundary. In (1.1), we adopt the so-called “absorbing

boundary conditions” (see, e.g., [5]), that is we assume that the particles are “killed” whenever

they leave the domain (−1, 1).

The space-fractional Burgers equation describes the physical processes of unidirectional

propagation of weakly nonlinear acoustic waves through a gas-filled pipe [36]. The fractional

derivative results from the memory effect of the wall friction through the boundary layer [7,

15, 36]. The same form can be found in other systems such as shallow-water waves [14] and

waves in bubbly liquids [26]. We refer to [10,28,31,34,36] for an incomplete list of references on

the applications of the fractional Burgers equation. The approximate solution of time and/or

space Burgers equations are obtained by several methods, such as Adomian decomposition

method [17,27,29], homotopy analysis method [30,35], variational iteration method [12,32] and

parametric spline functions method [8].

Besides, several numerical methods are used to solve the fractional Burgers equation, such as

finite difference (FD) method [9,17,19,36,37,39], and spectral method [1,3,36,38]. Sugimoto [36]

solved the space-fractional Burgers equation by FD method and Fourier spectral method in the

numerical experiments, respectively. Fractional Burgers equation with fractional nonlinear term

and diffusion term is introduced by Zayernouri et al. [38], in order to test the spectral collocation

method based on the Jacobi polyfractonomials. The time-fractional Burgers equation is taken

as a numerical example by Li [17] and Zhao [39], and solved by FD method. Esen et al. [9]

developed a full discrete scheme for the time-fractional Burgers equation, based on FD method

in time and Haar wavelet method in space. A space-time Legendre spectral collocation method

is proposed to solve space-time fractional Burgers equation in [3]. No error analysis was explored

in the above researches. Recently, a FD method is used to solve the time-fractional Burgers

equation defined by a new generalized time fractional derivative [37], and stability analysis is

provided. In [19], Li et al. proposed a linear implicit finite difference scheme for solving the

time-fractional Burgers equation, and a convergence rate of O(τ + h2) is established, where τ

and h are the temporal and spatial step sizes, respectively. Asgari et al. [1] proposed two semi-

implicit Fourier pseudospectral schemes for the solution of generalized time fractional Burgers

type equations, with an analysis of consistency, stability, and convergence.

The aim of this study is to develop a linear implicit L1-Legendre Galerkin Chebyshev collo-

cation method for the generalized Burgers equation with time- and space-fractional derivatives.

First of all, a linear implicit L1 FD scheme [25] is proposed for temporal discretization. Thus,

the advantage of the work [19] is preserved, i.e., iterative methods become dispensable when

we solve the problem and the computational cost can be significantly reduced compare to the

usual implicit FD schemes. Then, due to the existence of the space fractional derivative opera-

tor, local methods such as FD method and finite element method (FEM) loss a big advantage

that they enjoy for usual PDEs. On the other hand, the main disadvantage of global methods

such as spectral method is no longer an issue for fractional PDEs [6, 13]. Therefore, spectral

method should be better suited for spatial discretization of the problem (1.1). In this paper,

the Legendre Galerkin Chebyshev collocation (LGCC) method [20], based on the Legendre-

Galerkin variational form, but the nonlinear term and the right-hand term are treated by


