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Abstract

This paper focuses on performance of several efficient and accurate numerical methods

for the long-wave short-wave interaction equations in the semiclassical limit regime. The

key features of the proposed methods are based on: (i) the utilization of the first-order or

second-order time-splitting method to the nonlinear wave interaction equations; (ii) the ap-

plication of Fourier pseudo-spectral method or compact finite difference approximation to

the linear subproblem and the spatial derivatives; (iii) the adoption of the exact integration

of the nonlinear subproblems and the ordinary differential equations in the phase space.

The numerical methods under study are efficient, unconditionally stable and higher-order

accurate, they are proved to preserve two invariants including the position density in L1.

Numerical results are reported for case studies with different types of initial data, these

results verify the conservation laws in the discrete sense, show the dependence of the nu-

merical solution on the time-step, mesh-size and dispersion parameter ε, and demonstrate

the behavior of nonlinear dispersive waves in the semi-classical limit regime.
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1. Introduction

In this paper, we aim to construct several efficient and accurate numerical methods to

solve the long-wave short-wave interaction (LSI) equations

iε∂tψ
ε +

ε2

2
∂xxψ

ε −
(
α(|ψε|2 − 1) + φε

)
ψε = 0, x ∈ R, t > 0, (1.1)
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∂tφ
ε = −λ∂x|ψε|2, x ∈ R, t > 0, (1.2)

where the parameter ε is analogous to the Planck constant in quantum mechanics, the complex-

valued function ψε and the real-valued function φε present the envelope of the high-frequent

short-wave and the amplitude of the long-wave, respectively. The coupling between the long-

wave and the short-wave is described by the real parameter λ which introduces the dispersion

interaction. The nonlinearity in the coupled system is due to α, α > 0 represents the defocusing

nonlinearity and α < 0 means the focusing nonlinearity. The initial conditions are given as

ψε(x, 0) = ψε
0(x) = A0(x)exp(iS0(x)/ε), x ∈ R, t > 0, (1.3)

φε(x, 0) = φε0(x), x ∈ R, t > 0, (1.4)

where A0 and S0/ε are the amplitude and phase angle of ψε
0, respectively. The small parameter

ε shows the space and time scales introduced in Eqs. (1.1)-(1.2), as well as the typical wave

length of oscillations of the initial data. This is precisely the semiclassical limit in the particular

case of Schrödinger equation with vanishing Planck’s constant (i.e., ε→ 0), which motivates us

to consider the LSI system in the semiclassical limit regime, i.e., the system with 0 < ε≪ 1.

For t ≥ 0, the LSI system (1.1)-(1.4) satisfies the following conservative laws [16]:

E1(t) :=

∫ ∞

−∞

|ψε(x, t)|2 dx ≡ E1(0), (1.5)

E2(t) := ε

∫
∞

−∞

Im (∂xψ
ε(x, t)/ψε(x, t)) ≡ E2(0), (1.6)

E3(t) :=

∫
∞

−∞

φε(x, t) ≡ E3(0), (1.7)

E4(t) :=

∫
∞

−∞

[
εIm

(
∂xψ

ε(x, t)ψε(x, t)
)
+

1

2λ
|ψε(x, t)|2

]
dx ≡ E4(0), (1.8)

E5(t) :=

∫ ∞

−∞

∂tφ
ε(x, t) |ψε(x, t)|2 dx ≡ E5(0) = 0, (1.9)

E6(t) :=

∫
∞

−∞

[
ε2

2
|∂xψε(x, t)|2 + α

2

(
|ψε(x, t)|2 − 1

)2

+ φε(x, t) |ψε(x, t)|2
]
≡ E6(0), (1.10)

where Im(f) and f present taking the imaginary part and conjugate of the function f .

In [14], under the assumptions of long-wave short-wave resonance, Benny proposed several

systems of dispersive equations. One of them is given by Eqs. (1.1)-(1.2) which has frequently

been used to describe interactions between long-waves and short-waves in various physical

settings (see [14,17,20,21,30,32,38]). For example, the Eqs. (1.1)-(1.2) with α = 0 was derived

in [21] to model the interaction between the long gravity waves and capillary waves on the surface

of shallow water, in the case when the group velocity of capillary wave coincides with the velocity

of the long-wave. It is pointed out that the physical significance of Eqs. (1.1)-(1.2) is that the

dispersion of the short-wave is balanced by the nonlinear interaction of the long-wave with the


