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Abstract

In this paper, we construct several efficient first-order splitting algorithms for solving

a multi-block composite convex optimization problem. The objective function includes a

smooth function with a Lipschitz continuous gradient, a proximable convex function that

may be nonsmooth, and a finite sum composed of a proximable function and a bounded

linear operator. To solve such an optimization problem, we transform it into the sum

of three convex functions by defining an appropriate inner product space. Based on the

dual forward-backward splitting algorithm and the primal-dual forward-backward splitting

algorithm, we develop several iterative algorithms that involve only computing the gradient

of the differentiable function and proximity operators of related convex functions. These

iterative algorithms are matrix-inversion-free and completely splitting algorithms. Finally,

we employ the proposed iterative algorithms to solve a regularized general prior image

constrained compressed sensing model that is derived from computed tomography image

reconstruction. Numerical results show that the proposed iterative algorithms outperform

the compared algorithms including the alternating direction method of multipliers, the

splitting primal-dual proximity algorithm, and the preconditioned splitting primal-dual

proximity algorithm.
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1. Introduction

Let H be a real Hilbert space. Let m be an integer such that m ≥ 1. For each i ∈

{1, 2, · · · ,m}, let Gi be a real Hilbert space. The set of all proper, lower semicontinuous convex

functions f : H → (−∞,+∞] is denoted by Γ0(H). In this paper, we consider solving a

composite convex optimization problem that takes the form

min
x∈H

f(x) + g(x) +
m
∑

i=1

hi(Bix), (1.1)
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where g ∈ Γ0(H) maybe nonsmooth, f : H → R is a convex differentiable function with an

L-Lipschitz continuous gradient for some constant L ∈ (0,+∞), for each i ∈ {1, 2, · · · ,m},

hi ∈ Γ0(Gi) and Bi : H → Gi is a bounded linear operator. In the following, we always

assume that the proximity operators with respect to g and {hi}mi=1 have a closed-form solution.

The optimization model (1.1) includes a large number of existing models as special cases. For

example,

(i) Let m = 1. For simplicity and brevity, we drop the subscript “1.” Then, the optimization

problem (1.1) reduces to

min
x∈H

f(x) + g(x) + h(Bx), (1.2)

which has been studied in [1–5].

(ii) Let f(x) = 0. Then, the optimization problem (1.1) becomes

min
x∈H

g(x) +

m
∑

i=1

hi(Bix), (1.3)

which has been studied in [6, 7].

(iii) Let g(x) = 0. Then, the optimization problem (1.1) is equivalent to

min
x∈H

f(x) +

m
∑

i=1

hi(Bix), (1.4)

which has been studied in [8]. Further, let Bi = I for each i ∈ {1, 2, · · · ,m}, where I denotes

the identity operator. Then, the optimization problem (1.4) reduces to

min
x∈H

f(x) +

m
∑

i=1

hi(x), (1.5)

which has been studied in [9, 10].

(iv) Let f(x) = 0 and g(x) = 0. Then, the optimization problem (1.1) reduces to

min
x∈H

m
∑

i=1

hi(Bix), (1.6)

which has been studied in [11].

Owing to the emergence of the compressive sensing theory, the problem of minimizing the

sum of two convex functions when f = 0 or g = 0 in (1.2) has attracted considerable attention

in recent years. A number of efficient iterative algorithms have been developed to solve such

this problem, which has wide application in signal and image processing. Examples include

the iterative shrinkage-thresholding algorithm (ISTA) and fast ISTA (FISTA) [12,13], two-step

ISTA [14], primal-dual hybrid gradient (PDHG) algorithm [15], fixed-point continuation (FPC)

algorithm [16], primal-dual proximity algorithm (PDPA) [17–19] and primal-dual fixed point

algorithm based on proximity operator (PDFP2O) [20, 21].

Operator splitting is the most powerful method for solving monotone inclusion problems,

and it can be easily applied to the above-mentioned convex optimization problems. Operator

splitting methods include forward-backward splitting [22–24], Douglas-Rachford splitting [25,

26] and forward-backward-forward splitting [27]. As operator splitting methods mainly focus

on solving inclusion problems of the sum of two monotone operators (see Definition 2.1), they


