
Advances in Applied Mathematics and Mechanics
Adv. Appl. Math. Mech., Vol. 4, No. 5, pp. 519-542

DOI: 10.4208/aamm.10-m1170
October 2012

Three Boundary Meshless Methods for Heat
Conduction Analysis in Nonlinear FGMs with
Kirchhoff and Laplace Transformation

Zhuo-Jia Fu1,2, Wen Chen1,∗ and Qing-Hua Qin2

1 Center for Numerical Simulation Software in Engineering and Sciences,
Department of Engineering Mechanics, Hohai University, Nanjing, Jiangsu, P. R. China
2 Research School of Engineering, Building 32, Australian National University,
Canberra, ACT 0200, Australia

Received 7 April 2011; Accepted (in revised version) 6 January 2012

Available online 30 July 2012

Abstract. This paper presents three boundary meshless methods for solving prob-
lems of steady-state and transient heat conduction in nonlinear functionally graded
materials (FGMs). The three methods are, respectively, the method of fundamen-
tal solution (MFS), the boundary knot method (BKM), and the collocation Trefftz
method (CTM) in conjunction with Kirchhoff transformation and various variable
transformations. In the analysis, Laplace transform technique is employed to han-
dle the time variable in transient heat conduction problem and the Stehfest nu-
merical Laplace inversion is applied to retrieve the corresponding time-dependent
solutions. The proposed MFS, BKM and CTM are mathematically simple, easy-
to-programming, meshless, highly accurate and integration-free. Three numerical
examples of steady state and transient heat conduction in nonlinear FGMs are con-
sidered, and the results are compared with those from meshless local boundary
integral equation method (LBIEM) and analytical solutions to demonstrate the effi-
ciency of the present schemes.
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1 Introduction

Functionally graded materials (FGMs) are a class of composite materials whose mi-
crostructure varies from one material to another with a specified gradient. Due to
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their continuously graded properties, FGMs are superior to conventional composites
and have featured in a wide range of engineering applications (e.g., thermal barrier
materials [1], optical materials [2], electronic materials [3] and even biomaterials [4]).

Since FGMs are widely used for structures subjected to thermal loading, it is im-
portant to analyze their thermal behaviors. Analytical methods are usually restricted
to simple physical domains and boundary conditions. Therefore, in the past decades,
extensive studies have been carried out on developing numerical methods for analyz-
ing thermal behaviors of FGMs, for example, the finite element method (FEM) [5], the
boundary element method (BEM) [6, 7], the meshless local boundary integral equa-
tion method (LBIE) [8], the meshless local Petrov-Galerkin method (MLPG) [9,10] and
the method of fundamental solution (MFS) [11, 12]. However, the conventional FEM
is inefficient for handling materials whose physical property varies continuously; the
BEM needs to treat the singular or hyper-singular integrals, which is mathematically
complex and requires extensive computational resources. To avoid these drawbacks
in the traditional FEM and BEM, various approaches [8–14] have been proposed, they
are named as meshless method in the literatures. Among these meshless methods, the
LBIE and the MLPG are classified as the category of weak-formulation, and the MFS
is classified as the category of strong-formulation.

In this paper, we focus on meshless methods with strong-formulation. This is due
to their inherent merits on easy-to-programming and integration-free. The MFS has
to construct a fictitious boundary [15–17] outside the physical domain to avoid the
singularities of fundamental solutions, however, selecting the appropriate fictitious
boundary plays a vital role for the accuracy and reliability of the MFS solution. Herein
the other two popular boundary collocation meshless methods are developed to avoid
the singularities of fundamental solutions and the controversial fictitious boundary in
the MFS. The first one is an old and powerful numerical scheme, collocation Trefftz
method (CTM) [18], which chooses nonsingular T-complete functions as basis func-
tion. Therefore the boundary knots can be placed on the physical boundary. The sec-
ond one is boundary knot method (BKM) proposed by Chen and Tanaka [19], which
used the nonsingular radial basis function (RBF) general solution instead of the sin-
gular fundamental solution. Thus the boundary knots are also placed on the physical
boundary.

On the other hand, the boundary meshless methods have been employed to deal
with transient heat conduction problems through three different approaches: (1) time-
dependent basis function method [20], one need to derive the corresponding basis
function as a priori to satisfy the transient heat conduction equation and then solve
it directly; (2) time stepping method [21], it transforms the transient heat conduc-
tion problem into time-independent inhomogeneous problem then introduces some
additional particular techniques to solve this inhomogeneous problem; (3) Laplace
transform technique [7], it uses the Laplace transformation of governing equation to
eliminate the time derivative leading to a steady-state heat conduction equation in
Laplace space, which can be solved by boundary meshless methods, and then employ
numerical Laplace inversion scheme to invert the Laplace space solutions back into


