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Abstract. Following the scalar auxiliary variable strategy, a linear semi-discrete scheme

in time for the hydrodynamic Q-tensor model of liquid crystal polymers is developed. It

is shown that the scheme is unconditionally energy stable and uniquely solvable. Nu-

merical simulations show the decreasing energy and the second-order convergence.
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1. Introduction

Liquid crystals represent an intermediate state of matter between crystalline solids and

isotropic fluids. Nematic liquid crystals usually have molecular orientational order but not

a positional order. The most popular mathematical model for the flow of low molecular

weight nematic liquid crystals is the Ericksen-Leslie model [10], where the orientation of

molecules is expressed by a unit vector d ∈ S 2. The distortional elasticity is described by

the Oseen-Frank energy but in this case, only uniaxial liquid crystals can be modeled. If

the orientational symmetry is broken, the Ericksen-Leslie theory fails to capture the asym-

metrical feature of the system. Moreover, if defects emerge, the director model is singular

and d cannot be determined. In order to model liquid crystal droplets, Diegel et al. [3]

coupled the Ericksen’s model for nematic liquid crystals and the Cahn-Hilliard interfacial

energy equation.

An alternative method to describe the orientation of nematic liquid crystal systems con-

sists in using a Q-tensor — i.e. a second-order tensor of trace zero. The reflective symmetry

of the system and biaxiality are naturally built-in into tensor-based theories and defects can

also be captured. Furthermore, the director model can be derived from Q-tensor theory for

weak flows and weak elastic limits [20]. Therefore, the Q-tensor based hydrodynamic

model is commonly used in nematic liquid crystal flows [1,5,6,18–20].
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In this work, we describe the average orientation of nematic liquid crystals with Q. Set

Λ :=
�

Q ∈ R3×3, tr (Q) = 0,Q= QT
	

and consider the general Landau-De Gennes free energy functional

E(Q) =

∫

Ω

�

K

2
|∇Q|2+ FB(Q)

�

dx, (1.1)

where the first term in the integral is the elastic energy, K a material-dependent elastic

constant, FB(Q) the bulk free energy density,

FB(Q) :=
α

2
tr (Q2) +

β

3
tr (Q3) +

γ

4
tr 2(Q2)

andα,β and γ > 0 are material-dependent and temperature-dependent constants — cf. [7].

According to [1, 20, 23], the non-dimensional governing equations of nematic liquid

crystal flows with hydrodynamics have the form

ut + u · ∇u= −∇p+η∇2u+∇ ·σ(Q,G)−G∇Q,

∇ · u= 0,

Qt + u · ∇Q− S(∇u,Q) = M1G,

(1.2)

where

S(∇u,Q) =W ·Q−Q ·W + a(Q · D+ D ·Q) +
2a

3

�

D−
∇ · uI

3

�

− 2a(D : Q)

�

Q+
I

3

�

,

σ(Q,G) = (Q ·G−G ·Q)− a(G ·Q+Q ·G)−
2a

3
G+ 2a(Q : G)

�

Q+
I

3

�

,

G= −
δE(Q)

δQ
= K∇2Q−

�

αQ+ β

�

Q2 −
tr (Q2)

3
I

�

+ γtr (Q2)Q

�

, (1.3)

and D = (∇u +∇uT )/2 and W = ∇u − ∇uT/2 are, respectively, the rate of strain and

vorticity tensors. Moreover, the first two terms in S(∇u,Q) and the material derivative of

Q define the Gordon-Schowalter derivative, G is the molecular field, σ(Q,G) the elastic

stress tensor, and a ∈ [−1,1] a geometric parameter of the nematic liquid crystal molecule

— cf. [20]. We also impose the initial condition

u(x, 0) = u0(x), Q(x, 0) = Q0(x),

and use one of the following boundary conditions:

1. u and Q are periodic on ∂Ω.

2. u|∂Ω = 0, Q|∂Ω = Q0 or ∂nQ|∂Ω = 0.


