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A CONFORMING DISCONTINUOUS GALERKIN FINITE
ELEMENT METHOD: PART II

XIU YE AND SHANGYOU ZHANG

Abstract. A conforming discontinuous Galerkin (DG) finite element method has been introduced
in [19] on simplicial meshes, which has the flexibility of using discontinuous approximation and the
simplicity in formulation of the classic continuous finite element method. The goal of this paper is
to extend the conforming DG finite element method in [19] so that it can work on general polytopal
meshes by designing weak gradient V., appropriately. Two different conforming DG formulations
on polytopal meshes are introduced which handle boundary conditions differently. Error estimates
of optimal order are established for the corresponding conforming DG approximation in both a
discrete H! norm and the L? norm. Numerical results are presented to confirm the theory.

Key words. Weak Galerkin, discontinuous Galerkin, stabilizer /penalty free, finite element meth-
ods, second order elliptic problem.

1. Introduction

We consider Poisson equation with a homogeneous Dirichlet boundary condition
in d dimension as our model problem for the sake of clear presentation. This
conforming DG method can also be used to solve other elliptic problems. The
Poisson problem seeks an unknown function u satisfying

(1) —Au = f inQ,
(2) u = 0 onodQ,

where € is a bounded polytopal domain in R%.
The weak form of the problem (1)-(2) is given as follows: find u € H}(Q) such
that

(3) (Vu, Vo) = (f,v) Yo e Hol(Q)

The H' conforming finite element method for the problem (1)-(2) keeps the same
simple form as in (3): find u, € V), C HE(Q) such that

(4) (Vup, Vov) = (f,v) Yv € Wy,

where V}, is a finite dimensional subspace of H}(€). The functions in V}, are required
to be continuous that makes the classic conforming finite element formulation (4)
less flexible in element construction and in mesh generation. These limitations are
caused by strong continuity requirement of functions in finite element spaces. A
solution to avoid these limitations is using discontinuous functions in finite element
spaces.

Researchers started to use discontinuous approximation in finite element pro-
cedure in the early 1970s [2, 3, 6, 14, 18]. Local discontinuous Galerkin methods
were introduced in [5]. Then a paper [1] in 2002 provides a unified analysis of
discontinuous Galerkin finite element methods for Poisson equation. Since then,
many new finite element methods with discontinuous approximations have been
developed such as hybridizable discontinuous Galerkin method [4], mimetic finite
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differences method [7], hybrid high-order method [13], weak Galerkin method [15]
and references therein.

One obvious disadvantage of discontinuous finite element methods is their rather
complex formulations which are often necessary to ensure connections of discontin-
uous solutions across element boundaries. The purpose of this paper is to obtain
a finite element formulation close to its original PDE weak form (3) for discontin-
uous polynomials. We believe that finite element formulations for discontinuous
approximations can be as simple as follows:

(5) (Vwup, V) = (f,v) Yo €V,

if V,,, an approximation of gradient, is appropriately defined for discontinuous
polynomials in V. The formulation (5) can be viewed as a counterpart of (3) for
discontinuous approximations.

In [19], we have developed a discontinuous finite element method that has an
ultra simple weak formulation (5) on triangular/tetrahedal meshes for any polyno-
mial degree k > 1. The formulation (5) has also been achieved for a WG method
defined in [15] on triangular/tetrahedral meshes. The lowest order WG method
developed in [15] has been improved in [8] for convex polygonal meshes, in which
non-polynomial functions are used for computing weak gradient.

The purpose of this paper is to extend the conforming DG in [19] so that it can
work on general polytopal meshes. The idea is to raise the degree of polynomials
used to compute weak gradient V,,. Using higher degree polynomials in compu-
tation of weak gradient will not change the size, neither the global sparsity of the
stiffness matrix. On the other side, the simple formulation of conforming DG (5)
will reduce programming complexity significantly. In this paper, two conforming
DG formulations on polytopal mesh are introduced for the equations (1)-(2). These
two methods are different in handling the homogeneous boundary condition. Op-
timal order error estimates are established for the corresponding conforming DG
approximations in both a discrete H' norm and the L? norm. Numerical results
are presented verifying the theorem.

2. Finite Element Method

In this section, we will introduce the conforming DG method. For any given
polygon D C €, we use the standard definition of Sobolev spaces H*®(D) with
s > 0. The associated inner product, norm, and semi-norms in H*(D) are denoted
by (-,)s.0, || - |ls.0, and | - |s.p, respectively. When s = 0, H%(D) coincides with
the space of square integrable functions L?(D). In this case, the subscript s is sup-
pressed from the notation of norm, semi-norm, and inner products. Furthermore,
the subscript D is also suppressed when D = ).

Let 7 be a partition of the domain € consisting of polygons in two dimension
or polyhedra in three dimension satisfying a set of conditions specified in [16] and
additional conditions specified in Lemma 3.1. Denote by &}, the set of all edges/faces
in 7y, and let £ = £,\09Q be the set of all interior edges/faces. For simplicity, we
will use term edge for edge/face without confusion.

For simplicity, we adopt the following notations,

(v,w)p, = Z (v,w)r = Z vwdx,

TET TeT, T

(v, w)gr, = Z (v,w) 5y = Z /E)vads.

TETh TeTh
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Let P(K) consist all the polynomials degree less or equal to k defined on K.

Algorithm 1. A conforming DG finite element method for the problem (1)-(2)
seeks up, € Vi, satisfying
(6) (Vwun, Vyv), = (f, v) Yo € V.

The weak gradient V,, in the equation (6) is defined as follows [17, 10, 15, 16]. For
a given T € T;, and a function v € Vj, + Hg(Q), the weak gradient V,,v € [P;(T)]¢
on T satisfies the following equation,

(7) (Vwv,d)r = —(v,V-q@)r + ({v},qa-n)or Vg e [F(T)]%

where j and {v} will be defined later.

In the following, we will introduce two finite element formulations by choosing
the vector spaces V}, and the definition of average {-} differently.

Let 77 and T be two polygons/polyhedrons sharing e if e € ). For e € &, and
v € Vi, + HE (), the jump [v] is defined as

(8) W] =v ifecdQ, [v]=uv|p, —vln ifec&

The order of T} and T5 is not essential.
Case 1. Strongly enforce boundary condition
In this case, V}, is defined for £ > 1 as

(9) Vi ={veL*(Q): vlr € P(T) TE€Th, wvloa=0}.
For e € &, and v € Vj, + H}(Q), the average {v} is defined as

1
(10) {v}=v ifecoQ, {v}= 5(1}|T1 +l|,) if e € &

Case 2. Weakly enforce boundary condition
Here, V}, is defined for k£ > 1 as
(11) Vi, ={veL*(Q): v|r € P(T), T€Ty}.

For e € &, and v € Vj, + H}(Q), the average {v} is defined as
1
(12) {v}=0 ifec o, {v}= 5(1}|T1 +olg,) ife€&).

Remark 1. For the finite element formulation (6) associated with Case 1, we
assume that each element T' € Ty, has no more than two edges on 02 in 2D, or no
more than 8 faces on 0 in 3D. This requirement is only needed for error analysis.
In practice, we cannot find any meshes consisting of elements sharing more than
two edges in 2D and three faces in 3D with OS2 after any mesh refinement.

Lemma 2.1. Let ¢ € HY(Q), then on T € T,

(13) V¢ = QpVe.
Proof. Using (7) and integration by parts, we have that for any q € [P;(T)]¢
(vwd)? q)T = _(¢a V- q)T + <{¢}7 q- n>8T

_((b? % q)T + <¢7 q- n>6T
(Voé,a)r = (QnVe,q)r,

which implies the desired identity (13). O
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3. Well Posedness

We start this section by introducing a semi-norms ||v|| and a norm |Jv||y,, for
any v € Vi, + H}(Q) as follows:

(14) Ioll* = > (Vv Vuo)r,
T€eTh

(15) i, = D IVelz+ Y r ]I
TeTh e€€y

For any function ¢ € H!(T), the following trace inequality holds true (see [16]
for details):

(16) lellz < C (hz' el + hrlIVellT) -
Lemma 3.1. Let T be a convex (n+1)-polygon/polyhedron of size hy with edges/faces
e, e1, ..., and ey, satisfying minor angle and length conditions to be specified in the

proof below. For a given polynomial gy € Py (e), we define a polynomial ¢ € Pyyp,(T)
by

(17) q=MA-A\q1, whereq € Py(T) satisfying
(18) (¢—q0,p), =0 Vp € Pyle),
(19) (Q7p)T =0 Vp S Pk*l(T)a

where \; € P(T) vanishes on e; and assumes value 1 at the barycenter of e. Then
it holds that

2
(20) lallz < Chi”lgolle,
where the nonzero constant is defined in (26) below, independent of T and qo.

Proof. First the linear system (18)—(19) of equation is square, of size dim P,. To
show its existence and uniqueness of solution, we need only to show the uniqueness.
Let go = 0 and p = ¢y in (18). It follows that g = 0 on e and ¢; = Aog2 for some
g2 € Py_1(T) because the weight is positive in the weighted L?(e) inner product.
Here Ao € Pi(T), Aole =0, and maxy Ag = 1. Next letting p = g2 in (19), due to a
positive weight []!, A; on T, we have g = 0.

If e; is a neighboring edge/face of e, then

2
)\i e — 7
o= 7@

where h,. is the doubled distance from the barycenter of e to e; along/on e and x
is the distance from a point on e to e; along (2D) or on (3D) e. For simplicity, we
assume this h, is also the size of e (it is indeed in 2D). To avoid too many constants,
we assume h, > hp/4. Then
hie,(T) hr 8 8

< <
(he/2)sine; — (he/2)sina; ~ sina; ~ sinag’

(21) max N =

where m — o (for some «; > a9 > 0 and a; < 7 — «ap) is the angle between e and
€i, hie,(T) is the maximal distance of points on T to e; in the direction orthogonal
to e;. Let eq,..., ey are all the neighboring edges/faces of e, m = 2 in 2D, and
m < n. For a lower bound, we have

1?’ .

T2 if ; <7/2
22 Xl > {16 v = ’
(22) |T0—{1 Vd Z% if ;> /2,

~ 16sinay
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where Ty is a square/cube at middle of e with size h./16, cf. Figure 1. We note that
other than triangles, a; < 7/2 for most other polygons. Here in (22), we assumed
sin aig > \/E/& where d is the space dimension, 2 or 3.

€2

€3 €1

€o

€ TO

|

FIGURE 1. Size |eg| = |e|/16 = e /8, and Ty is square of size |eq].

For non-neighboring edges e;, we have

1 if €; H €1,
)\j‘el = {2(z+xj)

W ot herWlse,

where z is the arc-length parametrization on e toward the extended intersection of
e and e;, x; is the distance on e from the an boundary point of e to the intersection.
Supposing e; is the only edge/polygonal between e and e;, ; = he, (cos a; —cos(a; +
a;)). Because x; > 0, it follows that

(he/2)sincy — (he + x;)sin(a; + ;) ~ sinag

(23) max Aj =

For a lower bound, because z; > 0 and e; is an edge/polygon in between, we have

1
(24) Al 2 Ailzy 2 5
Together, we have, noting \o|r < 1,
1 8N
(25) AL Al > o and AgA1 - Ayl < ——.
SN

Let ¢1 € Pi(e) be the solution in (18). Letting p = ¢; in (18), by (25), we get
11
162k 9n

- 1 _
a2 < S llanlz, < e Andn, o).

= (g0, q1), < llgollollg1llo,
where in the first step we use the fact ¢; is a degree k polynomial. We view
G1 € Px(e) as defined on the whole line/plane passing through e. We extend this

polynomial to a polynomial §; in P(R%), by letting it be constant in the direction
orthogonal to e. In particular, we have, as T'C St and e C S,

. - . hr\ 2 -
il < laal3, = helal, < (32) nrllanl?
€

< 4% b G )? < 2% (28 g0l )2,
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where S is a square/cube of size hp containing T, with one side S, which contains
e.

Rewriting (17) in terms of this extended ¢;, we have
g=A-A(Xog2+G1)
for some g2 € Py—1(T). Letting p = g2 in (19), by (25), we have
8TL

2 2k—2 2 2k—2
lg2ll7 < (hr/he,) g2l7, < 64 S g

23n+12k—12 2hT

(A1 A2, q2)1

Soan b (A1 AnAog2, @2) 1,0
€o

23n+12k75

< (AN

= Tsin” ag ( 1 n OQQaQZ)T
23n+12k—5

e )\ ...)\ Ny —
sin” ag (1 nq1, QQ)T
23n+12k—5

< ———2"[@llrllgzllT,
sin” ag

where Tp o is the top half of Tp, cf. Figure 1. Then,

gl = AT+ A2 (Nog2 — 1), (Noga — @1))

82n
< ——((Mog2 — q1), (Mog2 — G1)) 7
sin®" ay
82n 5 9
< —i—2([hoa2l7 + @ l17)
sin“" «yg
26n+1 ) 9
< —i— a2z +llal7),
sin“" ay

where A\g < 1 on T. Finally, combining above three bounds, we get

H || - 23n+1/2 ( 24n+12k—5
qiiT =

1
2
e (e +1) il

(26) 9l0k+4n+1/2 / odn+12k—5 3 s
<t (G 1) il
sin” ag sin” oy
1/2
=: Chy*|lgolle-

The proof is completed. O

Lemma 3.2. There exist two positive constants Cy and Cy independent of mesh
size h such that for any v € V},, we have

(27) Cillvlln < loll < Calfvf|1,n-

Proof. For any v € Vj,, it follows from the definition of weak gradient (7) and
integration by parts that for all q € [P;(T)]¢

(Vwv,a)r = —(,V-a)r+ ({v},a n)yp
(28) = (Vv,q)r — (v —{v},q-n)yy.
By letting q = Vv in (28) we arrive at

(Vuv, Vo)1 = (Vu, Vyv)r — (v — {v}, Vv - n) .
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It is easy to see that the following equations hold true for {v} defined in both (10)
and (12),

(29) v —A{vtle = lllellle ifec 9, [lv—{vile= %Il[vllle if e € &.

From (29), (16) and the inverse inequality we have

IVwollz < [IVollzlIVuollr + [lv = {v}llor [ Vuwovllor
—1/2
< IVollzlVwollr + Chz' 2o = {w}lor [ Vuwollr
—-1/2
< Vel Vavlr + Chz' 2 lllor |Vl

which implies

IVuvllz < € (90l + Chz[blllor )
and consequently

lvll < Callvllyp-
Next we will prove Ci||v|[1, < ||v]|. For v € Vj, and q € [P;(T)]%, by (7) and

integration by parts, we have
(30) (vwva q)T = (V’U, q)T + <{IU} —-v,q- n>8T'
We like to find qg € [P;(T)]¢ such that,
(31) (Vv,q0)r =0, ({v}—v,qom)yp, =0, and {{v}-v,qom), = [{v}—v]?,
and
(32) laollz < Cha*[[{v} = vll..

Letting qo = {v} — v in (18), there exists a ¢ € Poyp—1(T) (le. j=n+k—1)
such that (18)—(20) hold, where n is the number of the edges/faces on a poly-
gon/polyhadron. Without loss of generality, let n = (nq,--- ,ng) for some ny # 0.
We then let qo = (¢/n1,0,---,0), which satisfies (31) and (32) by Lemma 3.1.
Substituting qo into (30), we get

(33) (Vuwv.do)r = [[{o} —v]2.

It follows from Cauchy-Schwarz inequality that
1/2
{v} = vlI? < ClIVurllrllaollr < Chy[Vuvlz] {v} - o],

which gives

(34) hr' 2o} = vllor < C Vvl
Using (29) and summing the both sides of (34) over T', we obtain
(35) > rMIlE < Cloll®.

ecéy

It follows from the trace inequality, the inverse inequality and (34),

IVol3 < IVuvllr Vol + Chy 2 1{v} = vllor | Vollr < ClIVwllzl|Vollr,
which implies
(36) > Ivelz < Clloll®.
TeThH

Combining (35) and (36), we prove the lower bound of (27) and complete the
proof of the lemma. O
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4. Error Estimates in Energy Norm

We start this section by defining some approximation operators. Let Qp be the
element-wise defined L? projection onto [P;(T)]? on each element T. We will call
any element T € 7T, that has one or two edges on 0f), boundary element in 2D.
Then we will define Iyu, an interpolation of u, on boundary elements. I,u for 3D
can be constructed in a similar fashion. For a boundary element T, let Ty C T be
a triangle such that 0T N O = 0Ty N IN. Let Ipu be kth order interpolation of u
on To.

Lemma 4.1. For any boundary element T € Ty, one has

(37) lu— Inullr + he ||V (u = Inu)llr < CRM Huler o

Proof. For any boundary element 7' € T}, by the construction of Iju, one has
(38) lu = Inullz, + bV (u — Inu)llm, < CRP Hulki,z,

Let Qo be the L? projection onto Py (T). The following estimate holds [9]
(39) lu = Qoullr + hrl|V(u = Qou)|lr < Ch* Huliir,r.

By the triangle inequality, then

(40) lu = Tnullr < |lu = Qoullr + [Qou — Ihul|z.

By the domain inverse inequality [11, 12] and under necessary regularity assumption
of the mesh 7j,, we have

(1) Qou— Iullr < ClQou — Inullz, < C(IQou — ullr, + lu — Inullz,):
Combining (38)-(41) yields

lu = Tyullr < CR* g,
Similarly, we can prove the second part of the estimate in (37) and finish the proof

of the lemma. O

Now we define Qpu € V3, an approximation of u for the two finite element
methods associated with Case 1 and Case 2. For the method associated with Case
1, let Qpru = Qou for any T which is not boundary element and Qpu = Iu for the
boundary element T'. For the case 2, define Qru = Qqu for all T € Ty,

Let e, = u—wup and €5, = Qru — up € V. Next we derive an error equation that
e, satisfies.

Lemma 4.2. For any v € V},, one has,
(42) (Vwen, Vwv)7, = €(u,v),
where
lu,v) = ((Vu—QpVu) -n,v—{vhar,.

Proof. Testing (1) by any v € V}, and using integration by parts and the fact that
Y rer,(Vu-n,{v})or = 0 for {v} defined in both (10) and (12), we arrive at

(43) (Vu, Vo), = (Vu-n,0 —{v}ar, = (f,0).
It follows from integration by parts, (7) and (13) that
(Vu, Vo), = (QpVu,Vu)7,

= 7(’0, V- (@hVu))Th -+ <”U, QnVu - n>37‘h
= (QnVu, Vo)1 + (v —{v},QnVu-n)s,
(44) = (Vuu,Vyuvu)7, + (v —{v},QyVu - n)gr,.
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Combining (43) and (44) gives
(45) (Vou, Vyu)m = (f,0) +£(u,v).
The error equation follows from subtracting (6) from (45),
(Vwen, V)7, = l(u,v) Yo € V.
This completes the proof of the lemma. O
Lemma 4.3. For any w € H**1(Q) and v € V},, we have
(46) lw,v)] < Ch*|wlpsr]lo]).

Proof. Using the Cauchy-Schwarz inequality, the trace inequality (16), (29) and
(27), we have

[l(w,v)] = Z (Vw — QpVw) -n,v—{v})ar
TETh
< C Y Vw-QuVular|v—{v}or
TeTh
< C < > bl (Vw - @th)||§T> (Z th[UHIi)
TeTh eely
< Ch*|wliplofl,
which proves the lemma. ([
Lemma 4.4. Let u € H*1(Q), then
(47) llw — Quull < Ch*fulys1.
Proof. Tt follows from (7), integration by parts, (16) and (29),
|(Vw(u—Qnu)d)r| = [—(u—Qnu,V-a)r + (u—{Qnru},q n)yy|

IV (u— Quu)llzllallr + CL™2|[Quull|or lallr
IV (u— Quu)llzllallr + Ch™?||[u — Quulllor|lall
Ch*|ulgs1,7llall7-

Letting q = V,,(u — Qpu) in the above equation and taking summation over T', we
have

[(V(u = Qnu),a)r + (Qnu — {Qnru}, q- 1),
(u—
(u—

INIA A

llw — Quull < Ch*fulys1.
We have proved the lemma. (I

Theorem 4.1. Let up € V3, be the finite element solution of (6). Assume the exact
solution u € H**Y(Q). Then, there exists a constant C' such that

(48) llw = unll < Ch*[ulsr-

Proof. 1t is straightforward to obtain

(49)  llenll® = (Vwem Vuwen)T,

( wuh; vweh)Th,

= (V thu Vutn, Vwer)r, + (Vo = VQpu, Vwen)T,

( wCh, weh)Th + (vw (U - Qhu>7 vweh)Th‘
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We will bound each terms in (49). Letting v = €}, € V3, in (42) and using (46) and
(47), we have

|(Vwen, Vwen)T, | [€(u, en)

< Ch*ulpsalenl]
< ChFlulisr]|Qru — wnl|
< ChFlulisr (|Qru — ull + flu — usll)
1
(50) < CR*uliyy + gllenll”

The estimate (47) implies

[(Va(u = @nu), Vwen) 7, | < Cllu = Qnul|flen]

1 2
Ch*ulisr + llenll”

A

(51)

IN

Combining the estimates (50) and (51) with (49), we arrive

llenll < Ch*Julysr,
which completes the proof. O
5. Error Estimates in L? Norm

The standard duality argument is used to obtain L? error estimate. Recall
en = u — up and €, = Qpu — up. The considered dual problem seeks @ € H(} (Q)
satisfying

(52) —A® = ¢, in{.
Assume that the following H?-regularity holds
(53) [@[]2 < Cllenl-

Theorem 5.1. Let uy, € Vy, be the finite element solution of (6). Assume that the
ezact solution w € H**1(Q) and (53) holds true. Then, there exists a constant C
such that

(54) lu—un|l < CH* g
Proof. Testing (52) by e;, and using the fact that ;. (V® - n,{exr})or = 0 and
(7) give
lenl® = —(A®,en)
= (V®, Vey)7, — (V@ n, er — {en})or,
(QrV®, Vep)r,, + (VO —QnV®, Vey)7, — (V@ -1, en — {en})sr,
—(V-QuV®, en), + (QuVe -1, en)yr,

+ (V(I) —QnrVo, Veh)']‘h — <V(I> ‘n, ey — {eh}>8Th
= (QuVe, Vyen)7, +(QnVe-n, er —{en})or,
+ (V‘I’ —QnpVo, Veh)Th - <V<I) ‘n, ep — {eh}>8Th

= (thq), Vweh)']’h + (V‘D —QpVo, veh)Th — Z(CI),eh).
It follows from (13) and (42)
(QnV®, Vyern)y, =

(Vu®, vweh)Th
(VuwQr®, Vyen), + (Vu(® — Qr®), Vyen)r,
= L(u,Qn®) + (Vy(® - Qn®), Vyen)r,.
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Combining the two equations above gives
lenl® = £(u,Qu®) + (Vu(® — Qu®), Vuwen)T,
(55) + (VO —QrVP, Vep)7, + (P, ep).
Next we will estimate all the terms on the right hand side of (55). Using the

Cauchy-Schwarz inequality, the trace inequality (16) and the definitions of @} and
Qyp, we obtain

M(u’ th))| < |((Vu - thu) - n, th) - {th)}>5Th|
1/2 1/2
< ( > (Vu— QhVU)Il?)T> ( > lQnd - {Qh<I>}§T>
TeTh TETh
1/2 1/2
< C ( > hl(Vu— QhVU)II§T> ( > Qe - <I>H|§T>
TETh TETh
f; (jhk+l|u|k+1hb|2.

It follows from (48) and (47) that

|(Vuwen, V(@ —Qn®))7 Cllenllll® — @n®f|

<
S Chk+1\u|k+1|<1>|2.
The norm equivalence (27) implies

(V& —QuV, Ver)r| < C(Y [Venl3) (D] VR —QuVe[7)"/?
TETh TETh

< O (IV(u = Quu)lF + IV (Quu — un)|F)"?

T€eTh

(Y Ve - Quva|3)/?

TETh
Ch|®|(h*|ulpr1 + [|Qnu — unll)
Ch|®lo(h*[ulgr1 + lu — un | + [|Qnu — ul])
Ch** g1 |®|o.

Using (27), (29), (48), and (47), we obtain

X

ININ A

(P, en)| = Z (QnV® = V) n, en —{en})yr
TETh
< 3 w1 QuVe — Vo|arhy?|len)lor
TeTh

< Chllela( Y hrt(llenllfr + lu — Quull3r)' 2

TET
< Chl@l2(llenll + (> hztlllu — Quulll3s)'/?
TeTh
< Chl|®|2(llenll + llu — Quull + Ch*[ulk11)
< CP  Mulpgr |22

Combining all the estimates above with (55) yields

llenll* < CR* fulisa||@]]-
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The estimate (54) follows from the above inequality and the regularity assumption
(53). We have completed the proof.

FIGURE 2.

of Table 1.

The first three levels of grids used in the computation

TABLE 1. Error profiles and convergence rates for (56) on trian-
gular grids (Figure 2).

level

llup, — Qoullo rate ‘

llup, —ul|  rate ‘

dim

by P; elements with strongly enforced boundary condition

EN|

0.5655E-03  2.00
0.1412E-03  2.00
0.3526E-04  2.00

0.8945E-01 1.00
0.4463E-01 1.00
0.2229E-01 1.00

5890
24066
97282

by P; elements with

weakly enforced boundary condition

0.5970E-03  2.09
0.1449E-03  2.04
0.3570E-04 2.02

0.8575E-01 0.94
0.4371E-01 0.97
0.2206E-01 0.99

6144
24576
98304

by P, elements with

strongly enforced boundary condition

0.6635E-05  2.99
0.8314E-06  3.00
0.1040E-06  3.00

0.1797E-02 2.00
0.4489E-03 2.00
0.1122E-03 2.00

11906
48386
195074

by P5 elements with

weakly enforced boundary condition

0.6446E-05 2.94
0.8197E-06  2.98
0.1033E-06  2.99

0.1744E-02 1.95
0.4424E-03 1.98
0.1113E-03 1.99

12288
49152
196608

by P3 elements with

strongly enforced boundary condition

0.4263E-07  4.00
0.2664E-08  4.00
0.1666E-09  4.00

0.2253E-04 3.01
0.2810E-05 3.00
0.3509E-06 3.00

19970
80898
325634

by P; elements with

weakly enforced boundary condition

0.4311E-07 4.02
0.2679E-08  4.01
0.1670E-09  4.00

0.2193E-04 2.97
0.2772E-05 2.98
0.3485E-06 2.99

20480
81920
327680

O
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TABLE 2. Error profiles and convergence rates for (56) on trian-
gular grids (Figure 2).

level | [|up — Qoullo rate ‘ llup —ul| rate ‘ dim

by P, elements with strongly enforced boundary condition

4 0.6433E-06 4.96 | 0.7511E-04 3.98 1762

5 0.2021E-07  4.99 | 0.4699E-05 4.00 7362

6 0.6320E-09  5.00 | 0.2934E-06 4.00 30082
by P, elements with weakly enforced boundary condition

4 0.6781E-06  5.03 | 0.7116E-04 3.90 1920

5 0.2076E-07  5.03 | 0.4577E-05 3.96 7680

6 0.6407E-09  5.02 | 0.2896E-06 3.98 30720

by Ps elements with strongly enforced boundary condition

4 0.2306E-07  5.94 | 0.3385E-05 5.01 2498

5 0.3668E-09  5.97 | 0.1050E-06 5.01 10370

6 0.5825E-11  5.98 | 0.3266E-08 5.01 42242
by Ps elements with weakly enforced boundary condition

4 0.2481E-07 6.04 | 0.3223E-05 4.94 2688

5 0.3811E-09 6.02 | 0.1024E-06 4.98 10752

6 0.5938E-11  6.00 | 0.3225E-08 4.99 43008

O

FIGURE 3. The first three polygonal grids for the computation of
Table 3.

0 0/0/0)

6. Numerical Example

We solve the following Poisson equation on the unit square:
(56) —Au =2’ sinwrsinTy, (v,y) € Q= (0,1)?

with the boundary condition «w = 0 on 0f2.

In the first computation, the level one grid consists of two unit right triangles
cutting from the unit square by a forward slash. The high level grids are the half-
size refinements of the previous grid. The first three levels of grids are plotted in
Figure 2. The error and the order of convergence for the both methods are shown
in Tables 1 and 2. Here on triangular grids, we let j = k 4+ 1 defined in (7) for
computing the weak gradient V,,v. The numerical results confirm the convergence
theory.

In the next computation, we use a family of polygonal grids (with 12-side poly-
gons) shown in Figure 3. We let the polynomial degree j = k + 2 for the weak
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TABLE 3. Error profiles and convergence rates for (56) on polygo-
nal grids shown in Figure 3.

level | [Jup, — Qoul| rate ‘ llup — ul|  rate ‘ dim

by P; elements with strongly enforced boundary condition

6 0.2913E-03  2.00 | 0.5402E-01 1.00 15100

7 0.7289E-04 2.00 | 0.2701E-01 1.00 60924

8 0.1823E-04 2.00 | 0.1351E-01 1.00 244732
by P; elements with weakly enforced boundary condition

6 0.2982E-03 2.03 | 0.5333E-01 0.98 15360

7 0.7374E-04 2.02 | 0.2684E-01 0.99 61440

8 0.1833E-04 2.01 | 0.1346E-01 1.00 245760

by P elements with strongly enforced boundary condition

6 0.1055E-05 3.00 | 0.7604E-03 2.00 30204

7 0.1318E-06 3.00 | 0.1901E-03 2.00 121852

8 0.1648E-07 3.00 | 0.4753E-04 2.00 489468
by P» elements with weakly enforced boundary condition

6 0.1057E-05 3.01 | 0.7574E-03 1.99 30720

7 0.1320E-06  3.00 | 0.1897E-03 2.00 122880

8 0.1649E-07 3.00 | 0.4748E-04 2.00 491520

by P3 elements with strongly enforced boundary condition

4 0.2706E-05 3.99 | 0.5478E-03 2.99 3004

5 0.1696E-06 4.00 | 0.6862E-04 3.00 12412

6 0.1060E-07 4.00 | 0.8582E-05 3.00 50428
by P; elements with weakly enforced boundary condition

4 0.2813E-05 4.04 | 0.5421E-03 2.97 3200

5 0.1728E-06  4.02 | 0.6827E-04 2.99 12800

6 0.1070E-07 4.01 | 0.8561E-05 3.00 51200

gradient on such polygonal meshes. The rate of convergence is listed in Tables 3-4.
The convergence history confirms the theory.
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