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A CONFORMING DISCONTINUOUS GALERKIN FINITE

ELEMENT METHOD: PART II

XIU YE AND SHANGYOU ZHANG

Abstract. A conforming discontinuous Galerkin (DG) finite element method has been introduced
in [19] on simplicial meshes, which has the flexibility of using discontinuous approximation and the
simplicity in formulation of the classic continuous finite element method. The goal of this paper is

to extend the conforming DG finite element method in [19] so that it can work on general polytopal
meshes by designing weak gradient ∇w appropriately. Two different conforming DG formulations
on polytopal meshes are introduced which handle boundary conditions differently. Error estimates
of optimal order are established for the corresponding conforming DG approximation in both a

discrete H1 norm and the L2 norm. Numerical results are presented to confirm the theory.

Key words. Weak Galerkin, discontinuous Galerkin, stabilizer/penalty free, finite element meth-
ods, second order elliptic problem.

1. Introduction

We consider Poisson equation with a homogeneous Dirichlet boundary condition
in d dimension as our model problem for the sake of clear presentation. This
conforming DG method can also be used to solve other elliptic problems. The
Poisson problem seeks an unknown function u satisfying

−∆u = f in Ω,(1)

u = 0 on ∂Ω,(2)

where Ω is a bounded polytopal domain in Rd.
The weak form of the problem (1)-(2) is given as follows: find u ∈ H1

0 (Ω) such
that

(∇u,∇v) = (f, v) ∀v ∈ H1
0 (Ω).(3)

The H1 conforming finite element method for the problem (1)-(2) keeps the same
simple form as in (3): find uh ∈ Vh ⊂ H1

0 (Ω) such that

(∇uh,∇v) = (f, v) ∀v ∈ Vh,(4)

where Vh is a finite dimensional subspace ofH1
0 (Ω). The functions in Vh are required

to be continuous that makes the classic conforming finite element formulation (4)
less flexible in element construction and in mesh generation. These limitations are
caused by strong continuity requirement of functions in finite element spaces. A
solution to avoid these limitations is using discontinuous functions in finite element
spaces.

Researchers started to use discontinuous approximation in finite element pro-
cedure in the early 1970s [2, 3, 6, 14, 18]. Local discontinuous Galerkin methods
were introduced in [5]. Then a paper [1] in 2002 provides a unified analysis of
discontinuous Galerkin finite element methods for Poisson equation. Since then,
many new finite element methods with discontinuous approximations have been
developed such as hybridizable discontinuous Galerkin method [4], mimetic finite
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differences method [7], hybrid high-order method [13], weak Galerkin method [15]
and references therein.

One obvious disadvantage of discontinuous finite element methods is their rather
complex formulations which are often necessary to ensure connections of discontin-
uous solutions across element boundaries. The purpose of this paper is to obtain
a finite element formulation close to its original PDE weak form (3) for discontin-
uous polynomials. We believe that finite element formulations for discontinuous
approximations can be as simple as follows:

(5) (∇wuh,∇wv) = (f, v) ∀v ∈ Vh,

if ∇w, an approximation of gradient, is appropriately defined for discontinuous
polynomials in Vh. The formulation (5) can be viewed as a counterpart of (3) for
discontinuous approximations.

In [19], we have developed a discontinuous finite element method that has an
ultra simple weak formulation (5) on triangular/tetrahedal meshes for any polyno-
mial degree k ≥ 1. The formulation (5) has also been achieved for a WG method
defined in [15] on triangular/tetrahedral meshes. The lowest order WG method
developed in [15] has been improved in [8] for convex polygonal meshes, in which
non-polynomial functions are used for computing weak gradient.

The purpose of this paper is to extend the conforming DG in [19] so that it can
work on general polytopal meshes. The idea is to raise the degree of polynomials
used to compute weak gradient ∇w. Using higher degree polynomials in compu-
tation of weak gradient will not change the size, neither the global sparsity of the
stiffness matrix. On the other side, the simple formulation of conforming DG (5)
will reduce programming complexity significantly. In this paper, two conforming
DG formulations on polytopal mesh are introduced for the equations (1)-(2). These
two methods are different in handling the homogeneous boundary condition. Op-
timal order error estimates are established for the corresponding conforming DG
approximations in both a discrete H1 norm and the L2 norm. Numerical results
are presented verifying the theorem.

2. Finite Element Method

In this section, we will introduce the conforming DG method. For any given
polygon D ⊆ Ω, we use the standard definition of Sobolev spaces Hs(D) with
s ≥ 0. The associated inner product, norm, and semi-norms in Hs(D) are denoted
by (·, ·)s,D, ∥ · ∥s,D, and | · |s,D, respectively. When s = 0, H0(D) coincides with
the space of square integrable functions L2(D). In this case, the subscript s is sup-
pressed from the notation of norm, semi-norm, and inner products. Furthermore,
the subscript D is also suppressed when D = Ω.

Let Th be a partition of the domain Ω consisting of polygons in two dimension
or polyhedra in three dimension satisfying a set of conditions specified in [16] and
additional conditions specified in Lemma 3.1. Denote by Eh the set of all edges/faces
in Th, and let E0

h = Eh\∂Ω be the set of all interior edges/faces. For simplicity, we
will use term edge for edge/face without confusion.

For simplicity, we adopt the following notations,

(v, w)Th
=

∑
T∈Th

(v, w)T =
∑
T∈Th

∫
T

vwdx,

⟨v, w⟩∂Th
=

∑
T∈Th

⟨v, w⟩∂T =
∑
T∈Th

∫
∂T

vwds.
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Let Pk(K) consist all the polynomials degree less or equal to k defined on K.

Algorithm 1. A conforming DG finite element method for the problem (1)-(2)
seeks uh ∈ Vh satisfying

(∇wuh,∇wv)Th
= (f, v) ∀v ∈ Vh.(6)

The weak gradient∇w in the equation (6) is defined as follows [17, 10, 15, 16]. For
a given T ∈ Th and a function v ∈ Vh +H1

0 (Ω), the weak gradient ∇wv ∈ [Pj(T )]
d

on T satisfies the following equation,

(7) (∇wv,q)T = −(v,∇ · q)T + ⟨{v},q · n⟩∂T ∀q ∈ [Pj(T )]
d,

where j and {v} will be defined later.
In the following, we will introduce two finite element formulations by choosing

the vector spaces Vh and the definition of average {·} differently.
Let T1 and T2 be two polygons/polyhedrons sharing e if e ∈ E0

h. For e ∈ Eh and
v ∈ Vh +H1

0 (Ω), the jump [v] is defined as

(8) [v] = v if e ⊂ ∂Ω, [v] = v|T1 − v|T2 if e ∈ E0
h.

The order of T1 and T2 is not essential.
Case 1. Strongly enforce boundary condition
In this case, Vh is defined for k ≥ 1 as

(9) Vh =
{
v ∈ L2(Ω) : v|T ∈ Pk(T ) T ∈ Th, v|∂Ω = 0

}
.

For e ∈ Eh and v ∈ Vh +H1
0 (Ω), the average {v} is defined as

(10) {v} = v if e ⊂ ∂Ω, {v} =
1

2
(v|T1 + v|T2) if e ∈ E0

h.

Case 2. Weakly enforce boundary condition
Here, Vh is defined for k ≥ 1 as

(11) Vh =
{
v ∈ L2(Ω) : v|T ∈ Pk(T ), T ∈ Th

}
.

For e ∈ Eh and v ∈ Vh +H1
0 (Ω), the average {v} is defined as

(12) {v} = 0 if e ⊂ ∂Ω, {v} =
1

2
(v|T1 + v|T2) if e ∈ E0

h.

Remark 1. For the finite element formulation (6) associated with Case 1, we
assume that each element T ∈ Th has no more than two edges on ∂Ω in 2D, or no
more than 3 faces on ∂Ω in 3D. This requirement is only needed for error analysis.
In practice, we cannot find any meshes consisting of elements sharing more than
two edges in 2D and three faces in 3D with ∂Ω after any mesh refinement.

Lemma 2.1. Let ϕ ∈ H1
0 (Ω), then on T ∈ Th

(13) ∇wϕ = Qh∇ϕ.

Proof. Using (7) and integration by parts, we have that for any q ∈ [Pj(T )]
d

(∇wϕ,q)T = −(ϕ,∇ · q)T + ⟨{ϕ},q · n⟩∂T
= −(ϕ,∇ · q)T + ⟨ϕ,q · n⟩∂T
= (∇ϕ,q)T = (Qh∇ϕ,q)T ,

which implies the desired identity (13). �
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3. Well Posedness

We start this section by introducing a semi-norms |||v||| and a norm ∥v∥1,h for
any v ∈ Vh +H1

0 (Ω) as follows:

|||v|||2 =
∑
T∈Th

(∇wv,∇wv)T ,(14)

∥v∥21,h =
∑
T∈Th

∥∇v∥2T +
∑
e∈Eh

h−1
e ∥[v]∥2e.(15)

For any function φ ∈ H1(T ), the following trace inequality holds true (see [16]
for details):

(16) ∥φ∥2e ≤ C
(
h−1
T ∥φ∥2T + hT ∥∇φ∥2T

)
.

Lemma 3.1. Let T be a convex (n+1)-polygon/polyhedron of size hT with edges/faces
e, e1, . . . , and en, satisfying minor angle and length conditions to be specified in the
proof below. For a given polynomial q0 ∈ Pk(e), we define a polynomial q ∈ Pk+n(T )
by

q = λ1 · · ·λnq1, where q1 ∈ Pk(T ) satisfying(17)

⟨q − q0, p⟩e = 0 ∀p ∈ Pk(e),(18)

(q, p)T = 0 ∀p ∈ Pk−1(T ),(19)

where λi ∈ P1(T ) vanishes on ei and assumes value 1 at the barycenter of e. Then
it holds that

∥q∥T ≤ Ch
1/2
T ∥q0∥e,(20)

where the nonzero constant is defined in (26) below, independent of T and q0.

Proof. First the linear system (18)–(19) of equation is square, of size dimPk. To
show its existence and uniqueness of solution, we need only to show the uniqueness.
Let q0 = 0 and p = q1 in (18). It follows that q1 ≡ 0 on e and q1 = λ0q2 for some
q2 ∈ Pk−1(T ) because the weight is positive in the weighted L2(e) inner product.
Here λ0 ∈ P1(T ), λ0|e = 0, and maxT λ0 = 1. Next letting p = q2 in (19), due to a
positive weight

∏n
i=0 λi on T 0, we have q2 = 0.

If ei is a neighboring edge/face of e, then

λi|e =
2

he
x

where he is the doubled distance from the barycenter of e to ei along/on e and x
is the distance from a point on e to ei along (2D) or on (3D) e. For simplicity, we
assume this he is also the size of e (it is indeed in 2D). To avoid too many constants,
we assume he ≥ hT /4. Then

max
T

λi =
h⊥ei(T )

(he/2) sinαi
≤ hT

(he/2) sinαi
≤ 8

sinαi
≤ 8

sinα0
,(21)

where π − αi (for some αi ≥ α0 > 0 and αi ≤ π − α0) is the angle between e and
ei, h⊥ei(T ) is the maximal distance of points on T to ei in the direction orthogonal
to ei. Let e1,. . . , em are all the neighboring edges/faces of e, m = 2 in 2D, and
m ≤ n. For a lower bound, we have

λi|T0 ≥

{
15
16 if αi ≤ π/2,

1−
√
d

16 sinαi
≥ 1

2 if αi > π/2,
(22)
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where T0 is a square/cube at middle of e with size he/16, cf. Figure 1. We note that
other than triangles, αi ≤ π/2 for most other polygons. Here in (22), we assumed

sinα0 ≥
√
d/8, where d is the space dimension, 2 or 3.

e T0

�
��	

e0

e1

e2

e3

Figure 1. Size |e0| = |e|/16 = eh/8, and T0 is square of size |e0|.

For non-neighboring edges ej , we have

λj |e1 =

{
1 if ej ∥ e1,
2(x+xj)
he1+xj

otherwise,

where x is the arc-length parametrization on e toward the extended intersection of
e and ei, xj is the distance on e from the an boundary point of e to the intersection.
Supposing ei is the only edge/polygonal between e and ej , xj = hei(cosαi−cos(αi+
αj)). Because xj ≥ 0, it follows that

max
T

λj =
h⊥ej (T )

(he/2) sinαi
≤ 2hT

(he + xj) sin(αi + αj)
≤ 8

sinα0
.(23)

For a lower bound, because xj > 0 and ei is an edge/polygon in between, we have

λj |T0 ≥ λi|T0 ≥ 1

2
.(24)

Together, we have, noting λ0|T ≤ 1,

λ1 · · ·λn|T0 ≥ 1

2n
, and λ0λ1 · · ·λn|T ≤ 8n

sinn α0
.(25)

Let q̃1 ∈ Pk(e) be the solution in (18). Letting p̃ = q1 in (18), by (25), we get

1

162k
1

2n
∥q̃1∥2e ≤ 1

2n
∥q̃1∥2e0 ≤ ⟨λ1 · · ·λnq̃1, q̃1⟩e

= ⟨q0, q̃1⟩e ≤ ∥q0∥0∥q̃1∥0,

where in the first step we use the fact q1 is a degree k polynomial. We view
q̃1 ∈ Pk(e) as defined on the whole line/plane passing through e. We extend this
polynomial to a polynomial q̃1 in Pk(Rd), by letting it be constant in the direction
orthogonal to e. In particular, we have, as T ⊂ ST and e ⊂ Se,

∥q̃1∥2T ≤ ∥q̃1∥2ST
= hT ∥q̃1∥2Se

≤
(
hT

he

)2k

hT ∥q̃1∥2e

≤ 42khT ∥q̃1∥2e ≤ 24khT (2
8k+n∥q0∥e)2,
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where ST is a square/cube of size hT containing T , with one side Se which contains
e.

Rewriting (17) in terms of this extended q̃1, we have

q = λ1 · · ·λn(λ0q2 + q̃1)

for some q2 ∈ Pk−1(T ). Letting p = q2 in (19), by (25), we have

∥q2∥2T ≤ (hT /he0)
2k−2 ∥q2∥2T0

≤ 642k−2 8n

sinn α0
(λ1 · · ·λnq2, q2)T0

≤ 23n+12k−12

sinn α0

2hT

he0

(λ1 · · ·λnλ0q2, q2)T0,0

≤ 23n+12k−5

sinn α0
(λ1 · · ·λnλ0q2, q2)T

=
23n+12k−5

sinn α0
(λ1 · · ·λnq̃1,−q2)T

≤ 23n+12k−5

sinn α0
2n∥q̃1∥T ∥q2∥T ,

where T0,0 is the top half of T0, cf. Figure 1. Then,

∥q∥2T = (λ2
1 · · ·λ2

n(λ0q2 − q̃1), (λ0q2 − q̃1))T

≤ 82n

sin2n α0

((λ0q2 − q̃1), (λ0q2 − q̃1))T

≤ 82n

sin2n α0

2(∥λ0q2∥2T + ∥q̃1∥2T )

≤ 26n+1

sin2n α0

(∥q2∥2T + ∥q̃1∥2T ),

where λ0 ≤ 1 on T . Finally, combining above three bounds, we get

∥q∥T ≤ 23n+1/2

sinn α0

(
(
24n+12k−5

sinn α0
)2 + 1

) 1
2

∥q̃1∥T

≤ 210k+4n+1/2

sinn α0

(
(
24n+12k−5

sinn α0
)2 + 1

) 1
2

h
1/2
T ∥q0∥e

=: Ch
1/2
T ∥q0∥e.

(26)

The proof is completed. �

Lemma 3.2. There exist two positive constants C1 and C2 independent of mesh
size h such that for any v ∈ Vh, we have

(27) C1∥v∥1,h ≤ |||v||| ≤ C2∥v∥1,h.

Proof. For any v ∈ Vh, it follows from the definition of weak gradient (7) and
integration by parts that for all q ∈ [Pj(T )]

d

(∇wv,q)T = −(v,∇ · q)T + ⟨{v},q · n⟩∂T
= (∇v,q)T − ⟨v − {v},q · n⟩∂T .(28)

By letting q = ∇wv in (28) we arrive at

(∇wv,∇wv)T = (∇v,∇wv)T − ⟨v − {v},∇wv · n⟩∂T .
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It is easy to see that the following equations hold true for {v} defined in both (10)
and (12),

(29) ∥v − {v}∥e = ∥[v]∥e if e ⊂ ∂Ω, ∥v − {v}∥e =
1

2
∥[v]∥e if e ∈ E0

h.

From (29), (16) and the inverse inequality we have

∥∇wv∥2T ≤ ∥∇v∥T ∥∇wv∥T + ∥v − {v}∥∂T ∥∇wv∥∂T
≤ ∥∇v∥T ∥∇wv∥T + Ch

−1/2
T ∥v − {v}∥∂T ∥∇wv∥T

≤ ∥∇v∥T ∥∇wv∥T + Ch
−1/2
T ∥[v]∥∂T ∥∇wv∥T

which implies

∥∇wv∥T ≤ C
(
∥∇v∥T + Ch

−1/2
T ∥[v]∥∂T

)
,

and consequently

|||v||| ≤ C2∥v∥1,h.
Next we will prove C1∥v∥1,h ≤ |||v|||. For v ∈ Vh and q ∈ [Pj(T )]

d, by (7) and
integration by parts, we have

(30) (∇wv,q)T = (∇v,q)T + ⟨{v} − v,q · n⟩∂T .

We like to find q0 ∈ [Pj(T )]
d such that,

(31) (∇v,q0)T = 0, ⟨{v}−v,q0 ·n⟩∂T\e = 0, and ⟨{v}−v,q0 ·n⟩e = ∥{v}−v∥2e,

and

∥q0∥T ≤ Ch
1/2
T ∥{v} − v∥e.(32)

Letting q0 = {v} − v in (18), there exists a q ∈ Pn+k−1(T ) (i.e. j = n + k − 1)
such that (18)–(20) hold, where n is the number of the edges/faces on a poly-
gon/polyhadron. Without loss of generality, let n = ⟨n1, · · · , nd⟩ for some n1 ̸= 0.
We then let q0 = ⟨q/n1, 0, · · · , 0⟩, which satisfies (31) and (32) by Lemma 3.1.
Substituting q0 into (30), we get

(33) (∇wv,q0)T = ∥{v} − v∥2e.

It follows from Cauchy-Schwarz inequality that

∥{v} − v∥2e ≤ C∥∇wv∥T ∥q0∥T ≤ Ch
1/2
T ∥∇wv∥T ∥{v} − v∥e,

which gives

(34) h
−1/2
T ∥{v} − v∥∂T ≤ C∥∇wv∥T .

Using (29) and summing the both sides of (34) over T , we obtain

(35)
∑
e∈Eh

h−1
e ∥[v]∥2e ≤ C|||v|||2.

It follows from the trace inequality, the inverse inequality and (34),

∥∇v∥2T ≤ ∥∇wv∥T ∥∇v∥T + Ch
−1/2
T ∥{v} − v∥∂T ∥∇v∥T ≤ C∥∇wv∥T ∥∇v∥T ,

which implies

(36)
∑
T∈Th

∥∇v∥2T ≤ C|||v|||2.

Combining (35) and (36), we prove the lower bound of (27) and complete the
proof of the lemma. �
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4. Error Estimates in Energy Norm

We start this section by defining some approximation operators. Let Qh be the
element-wise defined L2 projection onto [Pj(T )]

d on each element T . We will call
any element T ∈ Th, that has one or two edges on ∂Ω, boundary element in 2D.
Then we will define Ihu, an interpolation of u, on boundary elements. Ihu for 3D
can be constructed in a similar fashion. For a boundary element T , let T0 ⊂ T be
a triangle such that ∂T ∩ ∂Ω = ∂T 0 ∩ ∂Ω. Let Ihu be kth order interpolation of u
on T0.

Lemma 4.1. For any boundary element T ∈ Th, one has

(37) ∥u− Ihu∥T + hT ∥∇(u− Ihu)∥T ≤ Chk+1|u|k+1,T .

Proof. For any boundary element T ∈ Th, by the construction of Ihu, one has

(38) ∥u− Ihu∥T0 + hT ∥∇(u− Ihu)∥T0 ≤ Chk+1|u|k+1,T0 .

Let Q0 be the L2 projection onto Pk(T ). The following estimate holds [9]

(39) ∥u−Q0u∥T + hT ∥∇(u−Q0u)∥T ≤ Chk+1|u|k+1,T .

By the triangle inequality, then

(40) ∥u− Ihu∥T ≤ ∥u−Q0u∥T + ∥Q0u− Ihu∥T .
By the domain inverse inequality [11, 12] and under necessary regularity assumption
of the mesh Th, we have

(41) ∥Q0u− Ihu∥T ≤ C∥Q0u− Ihu∥T0 ≤ C(∥Q0u− u∥T0 + ∥u− Ihu∥T0).

Combining (38)-(41) yields

∥u− Ihu∥T ≤ Chk+1|u|k+1,T .

Similarly, we can prove the second part of the estimate in (37) and finish the proof
of the lemma. �

Now we define Qhu ∈ Vh, an approximation of u for the two finite element
methods associated with Case 1 and Case 2. For the method associated with Case
1, let Qhu = Q0u for any T which is not boundary element and Qhu = Ihu for the
boundary element T . For the case 2, define Qhu = Q0u for all T ∈ Th.

Let eh = u−uh and ϵh = Qhu−uh ∈ Vh. Next we derive an error equation that
eh satisfies.

Lemma 4.2. For any v ∈ Vh, one has,

(∇weh,∇wv)Th
= ℓ(u, v),(42)

where

ℓ(u, v) = ⟨(∇u−Qh∇u) · n, v − {v}⟩∂Th
.

Proof. Testing (1) by any v ∈ Vh and using integration by parts and the fact that∑
T∈Th

⟨∇u · n, {v}⟩∂T = 0 for {v} defined in both (10) and (12), we arrive at

(43) (∇u,∇v)Th
− ⟨∇u · n, v − {v}⟩∂Th

= (f, v).

It follows from integration by parts, (7) and (13) that

(∇u,∇v)Th
= (Qh∇u,∇v)Th

= −(v,∇ · (Qh∇u))Th
+ ⟨v,Qh∇u · n⟩∂Th

= (Qh∇u,∇wv)Th
+ ⟨v − {v},Qh∇u · n⟩∂Th

= (∇wu,∇wv)Th
+ ⟨v − {v},Qh∇u · n⟩∂Th

.(44)
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Combining (43) and (44) gives

(∇wu,∇wv)Th
= (f, v) + ℓ(u, v).(45)

The error equation follows from subtracting (6) from (45),

(∇weh,∇wv)Th
= ℓ(u, v) ∀v ∈ Vh.

This completes the proof of the lemma. �
Lemma 4.3. For any w ∈ Hk+1(Ω) and v ∈ Vh, we have

|ℓ(w, v)| ≤ Chk|w|k+1|||v|||.(46)

Proof. Using the Cauchy-Schwarz inequality, the trace inequality (16), (29) and
(27), we have

|ℓ(w, v)| =

∣∣∣∣∣ ∑
T∈Th

⟨(∇w −Qh∇w) · n, v − {v}⟩∂T

∣∣∣∣∣
≤ C

∑
T∈Th

∥∇w −Qh∇w∥∂T ∥v − {v}∥∂T

≤ C

(∑
T∈Th

hT ∥(∇w −Qh∇w)∥2∂T

) 1
2
(∑

e∈Eh

h−1
e ∥[v]∥2e

) 1
2

≤ Chk|w|k+1|||v|||,
which proves the lemma. �

Lemma 4.4. Let u ∈ Hk+1(Ω), then

(47) |||u−Qhu||| ≤ Chk|u|k+1.

Proof. It follows from (7), integration by parts, (16) and (29),

|(∇w(u−Qhu),q)T | = | − (u−Qhu,∇ · q)T + ⟨u− {Qhu},q · n⟩∂T |
= |(∇(u−Qhu),q)T + ⟨Qhu− {Qhu},q · n⟩∂T |
≤ ∥∇(u−Qhu)∥T ∥q∥T + Ch−1/2∥[Qhu]∥∂T ∥q∥T
≤ ∥∇(u−Qhu)∥T ∥q∥T + Ch−1/2∥[u−Qhu]∥∂T ∥q∥T
≤ Chk|u|k+1,T ∥q∥T .

Letting q = ∇w(u−Qhu) in the above equation and taking summation over T , we
have

|||u−Qhu||| ≤ Chk|u|k+1.

We have proved the lemma. �
Theorem 4.1. Let uh ∈ Vh be the finite element solution of (6). Assume the exact
solution u ∈ Hk+1(Ω). Then, there exists a constant C such that

(48) |||u− uh||| ≤ Chk|u|k+1.

Proof. It is straightforward to obtain

|||eh|||2 = (∇weh,∇weh)Th
(49)

= (∇wu−∇wuh,∇weh)Th

= (∇wQhu−∇wuh,∇weh)Th
+ (∇wu−∇wQhu,∇weh)Th

= (∇weh,∇wϵh)Th
+ (∇w(u−Qhu),∇weh)Th

.
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We will bound each terms in (49). Letting v = ϵh ∈ Vh in (42) and using (46) and
(47), we have

|(∇weh,∇wϵh)Th
| = |ℓ(u, ϵh)|

≤ Chk|u|k+1|||ϵh|||
≤ Chk|u|k+1|||Qhu− uh|||
≤ Chk|u|k+1(|||Qhu− u|||+ |||u− uh|||)

≤ Ch2k|u|2k+1 +
1

4
|||eh|||2.(50)

The estimate (47) implies

|(∇w(u−Qhu),∇weh)Th
| ≤ C|||u−Qhu||||||eh|||

≤ Ch2k|u|2k+1 +
1

4
|||eh|||2.(51)

Combining the estimates (50) and (51) with (49), we arrive

|||eh||| ≤ Chk|u|k+1,

which completes the proof. �

5. Error Estimates in L2 Norm

The standard duality argument is used to obtain L2 error estimate. Recall
eh = u − uh and ϵh = Qhu − uh. The considered dual problem seeks Φ ∈ H1

0 (Ω)
satisfying

−∆Φ = eh in Ω.(52)

Assume that the following H2-regularity holds

(53) ∥Φ∥2 ≤ C∥eh∥.

Theorem 5.1. Let uh ∈ Vh be the finite element solution of (6). Assume that the
exact solution u ∈ Hk+1(Ω) and (53) holds true. Then, there exists a constant C
such that

(54) ∥u− uh∥ ≤ Chk+1|u|k+1.

Proof. Testing (52) by eh and using the fact that
∑

T∈Th
⟨∇Φ · n, {eh}⟩∂T = 0 and

(7) give

∥eh∥2 = −(∆Φ, eh)

= (∇Φ, ∇eh)Th
− ⟨∇Φ · n, eh − {eh}⟩∂Th

= (Qh∇Φ, ∇eh)Th
+ (∇Φ−Qh∇Φ, ∇eh)Th

− ⟨∇Φ · n, eh − {eh}⟩∂Th

= −(∇ ·Qh∇Φ, eh)Th
+ ⟨Qh∇Φ · n, eh⟩∂Th

+ (∇Φ−Qh∇Φ, ∇eh)Th
− ⟨∇Φ · n, eh − {eh}⟩∂Th

= (Qh∇Φ, ∇weh)Th
+ ⟨Qh∇Φ · n, eh − {eh}⟩∂Th

+ (∇Φ−Qh∇Φ, ∇eh)Th
− ⟨∇Φ · n, eh − {eh}⟩∂Th

= (Qh∇Φ, ∇weh)Th
+ (∇Φ−Qh∇Φ, ∇eh)Th

− ℓ(Φ, eh).

It follows from (13) and (42)

(Qh∇Φ, ∇weh)Th
= (∇wΦ, ∇weh)Th

= (∇wQhΦ, ∇weh)Th
+ (∇w(Φ−QhΦ), ∇weh)Th

= ℓ(u,QhΦ) + (∇w(Φ−QhΦ), ∇weh)Th
.
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Combining the two equations above gives

∥eh∥2 = ℓ(u,QhΦ) + (∇w(Φ−QhΦ), ∇weh)Th

+ (∇Φ−Qh∇Φ, ∇eh)Th
+ ℓ(Φ, eh).(55)

Next we will estimate all the terms on the right hand side of (55). Using the
Cauchy-Schwarz inequality, the trace inequality (16) and the definitions of Qh and
Qh we obtain

|ℓ(u,QhΦ)| ≤ |⟨(∇u−Qh∇u) · n, QhΦ− {QhΦ}⟩∂Th
|

≤

(∑
T∈Th

∥(∇u−Qh∇u)∥2∂T

)1/2(∑
T∈Th

∥QhΦ− {QhΦ}∥2∂T

)1/2

≤ C

(∑
T∈Th

h∥(∇u−Qh∇u)∥2∂T

)1/2(∑
T∈Th

h−1∥[QhΦ− Φ]∥2∂T

)1/2

≤ Chk+1|u|k+1|Φ|2.

It follows from (48) and (47) that

|(∇weh, ∇w(Φ−QhΦ))Th
| ≤ C|||eh||||||Φ−QhΦ|||

≤ Chk+1|u|k+1|Φ|2.

The norm equivalence (27) implies

|(∇Φ−Qh∇Φ, ∇eh)Th
| ≤ C(

∑
T∈Th

∥∇eh∥2T )1/2(
∑
T∈Th

∥∇Φ−Qh∇Φ∥2T )1/2

≤ C(
∑
T∈Th

(∥∇(u−Qhu)∥2T + ∥∇(Qhu− uh)∥2T ))1/2

× (
∑
T∈Th

∥∇Φ−Qh∇Φ∥2T )1/2

≤ Ch|Φ|2(hk|u|k+1 + |||Qhu− uh|||)
≤ Ch|Φ|2(hk|u|k+1 + |||u− uh|||+ |||Qhu− u|||)
≤ Chk+1|u|k+1|Φ|2.

Using (27), (29), (48), and (47), we obtain

|ℓ(Φ, eh)| =

∣∣∣∣∣ ∑
T∈Th

⟨(Qh∇Φ−∇Φ) · n, eh − {eh}⟩∂T

∣∣∣∣∣
≤

∑
T∈Th

h
1/2
T ∥Qh∇Φ−∇Φ∥∂Th−1/2

T ∥[eh]∥∂T

≤ Ch∥Φ∥2(
∑
T∈Th

h−1
T (∥[εh]∥2∂T + ∥[u−Qhu]∥2∂T )1/2

≤ Ch∥Φ∥2(|||εh|||+ (
∑
T∈Th

h−1
T ∥[u−Qhu]∥2∂T )1/2

≤ Ch∥Φ∥2(|||eh|||+ |||u−Qhu|||+ Chk|u|k+1)

≤ Chk+1|u|k+1∥Φ∥2.

Combining all the estimates above with (55) yields

∥eh∥2 ≤ Chk+1|u|k+1∥Φ∥2.
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The estimate (54) follows from the above inequality and the regularity assumption
(53). We have completed the proof. �
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Figure 2. The first three levels of grids used in the computation
of Table 1.

Table 1. Error profiles and convergence rates for (56) on trian-
gular grids (Figure 2).

level ∥uh −Q0u∥0 rate |||uh − u||| rate dim

by P1 elements with strongly enforced boundary condition

6 0.5655E-03 2.00 0.8945E-01 1.00 5890

7 0.1412E-03 2.00 0.4463E-01 1.00 24066

8 0.3526E-04 2.00 0.2229E-01 1.00 97282

by P1 elements with weakly enforced boundary condition

6 0.5970E-03 2.09 0.8575E-01 0.94 6144

7 0.1449E-03 2.04 0.4371E-01 0.97 24576

8 0.3570E-04 2.02 0.2206E-01 0.99 98304

by P2 elements with strongly enforced boundary condition

6 0.6635E-05 2.99 0.1797E-02 2.00 11906

7 0.8314E-06 3.00 0.4489E-03 2.00 48386

8 0.1040E-06 3.00 0.1122E-03 2.00 195074

by P2 elements with weakly enforced boundary condition

6 0.6446E-05 2.94 0.1744E-02 1.95 12288

7 0.8197E-06 2.98 0.4424E-03 1.98 49152

8 0.1033E-06 2.99 0.1113E-03 1.99 196608

by P3 elements with strongly enforced boundary condition

6 0.4263E-07 4.00 0.2253E-04 3.01 19970

7 0.2664E-08 4.00 0.2810E-05 3.00 80898

8 0.1666E-09 4.00 0.3509E-06 3.00 325634

by P3 elements with weakly enforced boundary condition

6 0.4311E-07 4.02 0.2193E-04 2.97 20480

7 0.2679E-08 4.01 0.2772E-05 2.98 81920

8 0.1670E-09 4.00 0.3485E-06 2.99 327680
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Table 2. Error profiles and convergence rates for (56) on trian-
gular grids (Figure 2).

level ∥uh −Q0u∥0 rate |||uh − u||| rate dim

by P4 elements with strongly enforced boundary condition

4 0.6433E-06 4.96 0.7511E-04 3.98 1762

5 0.2021E-07 4.99 0.4699E-05 4.00 7362

6 0.6320E-09 5.00 0.2934E-06 4.00 30082

by P4 elements with weakly enforced boundary condition

4 0.6781E-06 5.03 0.7116E-04 3.90 1920

5 0.2076E-07 5.03 0.4577E-05 3.96 7680

6 0.6407E-09 5.02 0.2896E-06 3.98 30720

by P5 elements with strongly enforced boundary condition

4 0.2306E-07 5.94 0.3385E-05 5.01 2498

5 0.3668E-09 5.97 0.1050E-06 5.01 10370

6 0.5825E-11 5.98 0.3266E-08 5.01 42242

by P5 elements with weakly enforced boundary condition

4 0.2481E-07 6.04 0.3223E-05 4.94 2688

5 0.3811E-09 6.02 0.1024E-06 4.98 10752

6 0.5938E-11 6.00 0.3225E-08 4.99 43008

Figure 3. The first three polygonal grids for the computation of
Table 3.

6. Numerical Example

We solve the following Poisson equation on the unit square:

−∆u = 2π2 sinπx sinπy, (x, y) ∈ Ω = (0, 1)2,(56)

with the boundary condition u = 0 on ∂Ω.
In the first computation, the level one grid consists of two unit right triangles

cutting from the unit square by a forward slash. The high level grids are the half-
size refinements of the previous grid. The first three levels of grids are plotted in
Figure 2. The error and the order of convergence for the both methods are shown
in Tables 1 and 2. Here on triangular grids, we let j = k + 1 defined in (7) for
computing the weak gradient ∇wv. The numerical results confirm the convergence
theory.

In the next computation, we use a family of polygonal grids (with 12-side poly-
gons) shown in Figure 3. We let the polynomial degree j = k + 2 for the weak
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Table 3. Error profiles and convergence rates for (56) on polygo-
nal grids shown in Figure 3.

level ∥uh −Q0u∥ rate |||uh − u||| rate dim

by P1 elements with strongly enforced boundary condition

6 0.2913E-03 2.00 0.5402E-01 1.00 15100

7 0.7289E-04 2.00 0.2701E-01 1.00 60924

8 0.1823E-04 2.00 0.1351E-01 1.00 244732

by P1 elements with weakly enforced boundary condition

6 0.2982E-03 2.03 0.5333E-01 0.98 15360

7 0.7374E-04 2.02 0.2684E-01 0.99 61440

8 0.1833E-04 2.01 0.1346E-01 1.00 245760

by P2 elements with strongly enforced boundary condition

6 0.1055E-05 3.00 0.7604E-03 2.00 30204

7 0.1318E-06 3.00 0.1901E-03 2.00 121852

8 0.1648E-07 3.00 0.4753E-04 2.00 489468

by P2 elements with weakly enforced boundary condition

6 0.1057E-05 3.01 0.7574E-03 1.99 30720

7 0.1320E-06 3.00 0.1897E-03 2.00 122880

8 0.1649E-07 3.00 0.4748E-04 2.00 491520

by P3 elements with strongly enforced boundary condition

4 0.2706E-05 3.99 0.5478E-03 2.99 3004

5 0.1696E-06 4.00 0.6862E-04 3.00 12412

6 0.1060E-07 4.00 0.8582E-05 3.00 50428

by P3 elements with weakly enforced boundary condition

4 0.2813E-05 4.04 0.5421E-03 2.97 3200

5 0.1728E-06 4.02 0.6827E-04 2.99 12800

6 0.1070E-07 4.01 0.8561E-05 3.00 51200

gradient on such polygonal meshes. The rate of convergence is listed in Tables 3-4.
The convergence history confirms the theory.

Acknowledgment

We would like to express our appreciation to Junping Wang for his valuable
advice. This research was supported in part by National Science Foundation Grant
DMS-1620016.

References

[1] D. Arnold, F. Brezzi, B. Cockburn and D. Marini, Unified analysis of discontinuous Galerkin

methods for elliptic problems, SIAM J. Numer. Anal., 39 (2002), 1749-1779.
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