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How does Gauge Cooling Stabilize Complex Langevin?
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Abstract. We study the mechanism of the gauge cooling technique to stabilize the
complex Langevin method in the one-dimensional periodic setting. In this case, we
find the exact solutions for the gauge transform which minimizes the Frobenius norm
of link variables. Thereby, we derive the underlying stochastic differential equations
by continuing the numerical method with gauge cooling, and thus provide a number
of insights on the effects of gauge cooling. A specific case study is carried out for the
Polyakov loop model in SU(2) theory, in which we show that the gauge cooling may
help form a localized distribution to guarantee there is no excursion too far away from
the real axis.
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1 Introduction

In quantum chromodynamics (QCD), the renormalization of the coupling constant de-
pends on the energy scale. As the energy scale increases, the coupling constant decays
to zero. Therefore the perturbative theory works well for high-energy scattering. How-
ever, when studying QCD at small momenta or energies (less than 1GeV), the coupling
constant is comparable to 1 and the perturbative theory is no longer accurate [16]. In
this case, one of the important methods is the path integral formulation, in which people
usually employ the lattice gauge theory to perform calculations. In lattice QCD, the de-
grees of freedom for both gluons and quarks are discretized on a four-dimensional lattice,
whose grid points are

x=(i, j,k,t)a, i, j,k,t∈Z,
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where a is the size of the lattice. Gluons on the lattice are represented by link variables be-
tween lattice points, which are matrices Uµ(x)∈SU(3), denoting the link between lattice
points x and x+eµ. Since the degrees of freedom for quarks can usually be integrated out
explicitly, the final form of the path integral is given by the following partition function:

Z=
∫
[dU]detM({U})e−S({U}), (1.1)

where
∫
[dU] stands for the integral with respect to all link variables Uµ(x) defined on

the Haar measure of SU(3), and {U} represents the collection of all link variables. In
the integrand, the matrix M({U}) is the fermion Green’s function, and S({U}) is the
Euclidean action for the gluons. Thus, given an observable O({U}), its expected value
can be calculated by

〈O〉= 1

Z

∫
[dU]O({U})detM({U})e−S({U}).

Monte Carlo methods such as the Metropolis algorithm and the Langevin algorithm can
be applied to evaluate this integral.

When we consider the system with quark chemical potential, the term detM({U})
may be non-positive, and thus (1.1) does not allow for a probabilistic interpretation [11].
In such a circumstance, the “reweighting” technique is required to carry out the Monte
Carlo simulation. Such a method introduces another partition function

Z0=
∫
[dU]detM0({U})e−S({U})

and rewrite Z as

Z=Z0

〈
detM({U})
detM0({U})

〉

0

,

where 〈·〉0 denotes the expectation of · based on the partition function Z0. However,
due to the rapid change of phase in detM({U})/detM0({U}), significant numerical sign
problem may appear, causing large deviation in the numerical integration [10].

To relax the sign problem, numerical methods such as Lefschetz thimble method [9]
and complex Langevin method (CLM) [19–21, 26] have been introduced. This paper fo-
cuses on the CLM, which can be considered as a straightforward complexification of
the real Langevin method. While the complex Langevin method effectively relaxes the
sign problem for some problems, the behavior of this method seems quite unpredictable.
Although in a lot of cases, the method produces correct integral values, sometimes it pro-
vides incorrect integral values, or even generates divergent dynamics [5]. A number of
efforts have been made to figure out the reason of failure and find a theory for its cor-
rect convergence [4, 12, 13, 23, 27]. Although a complete theory has not been found, the
problem has been much better understood.


