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Abstract

This paper focuses on the adaptive discontinuous Galerkin (DG) methods for the tem-

pered fractional (convection) diffusion equations. The DG schemes with interior penalty

for the diffusion term and numerical flux for the convection term are used to solve the

equations, and the detailed stability and convergence analyses are provided. Based on

the derived posteriori error estimates, the local error indicator is designed. The theoret-

ical results and the effectiveness of the adaptive DG methods are, respectively, verified

and displayed by the extensive numerical experiments. The strategy of designing adaptive

schemes presented in this paper works for the general PDEs with fractional operators.
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1. Introduction

Fractional calculus [8] is a popular mathematical tool for modelling anomalous diffusions

[27], being ubiquitous in nature. Microscopically, anomalous diffusion can be described by

continuous time random walk (CTRW), defined by the waiting time and jump length; generally

the first moment of the waiting time and/or the second moment of the jump length diverge(s).

Sometimes, it is better to temper the broad distribution(s) of the waiting time and/or the jump

length [4, 19, 25, 44], because of the boundedness of physical space or the finite lifespan of the

biological particles or the slow transition of different diffusion types. Based on the tempered

CTRW, the partial differential equations (PDEs) characterizing the evolution of the functional

distribution of the trajectories of the particles are derived [41], which reduce to the PDEs

describing the distribution of the positions of the particles if taking the parameter p over there

as 0, called tempered fractional PDEs; here, we discuss their (adaptive) discontinuous Galerkin

(DG) methods.

There are already some works for numerically solving (tempered) fractional PDEs by varia-

tional methods [19,22,26,29,31,33,40,42,46]. Ervin and Roop [22] firstly present the variational

formulation for the fractional advection dispersion equation. The DG methods are particularly

applied to fractional problems with their majority of characteristics [7,13,24,34,39,43], natural-

ly being formulated for any order of accuracy in any element, being flexible in choosing element

sizes in any place, suitable for adaptivity, being local and easy to invert for mass matrix, leading
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to an explicit formulation for time dependent problems, etc. Cockburn and Mustapha [14] pro-

vide a hybridizable DG method for fractional diffusion problems; McLean and Mustapha [29]

discuss the superconvergence of the DG method for the fractional diffusion and wave equa-

tions; Xu and Hesthaven [42], and Wang et al [40], respectively, consider DG and hybridized

DG methods for the fractional convection-diffusion equations; Zayernouri and Karniadakis [46]

design discontinuous spectral element methods for the time and space fractional differential

equations. Du et al [20] give a convergent adaptive finite element algorithm for nonlocal d-

iffusion and peridynamic models. Ainsworth and Glusa [3], and Chen et al [11], discuss the

adaptive algorithms about fractional Laplacian with integral definition and spectral definition,

respectively. Zhao et al [45] design an adaptive algorithm for Riesz fractional derivative with

a posteriori error estimator based on gradient recovery approach. It seems that there are not

works for investigating the potential advantages of DG methods in adaptivity for fractional

problems, by deriving posteriori error estimates and providing the local error indicators.

The model we consider in this paper is the two dimensional space tempered fractional

differential equation with absorbing boundary conditions [17, 18, 21], i.e.,















∂tu+ b · ∇u− κ1∇α,λ
x u− κ2∇β,λ

y u = f, (x, t) ∈ Ω× J,

u(x, t) = uin, Γin × J,

u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = 0, (x, t) ∈ R
2\Ω̄× J,

(1.1)

where α, β ∈ (0, 1), λ > 0, and κ1, κ2 > 0 in the domain Ω = [a, b]× [c, d] and J = [0, T ]. The

boundary of the domain Ω is decomposed into two parts: the inflow part Γin and outflow part

Γout defined by

Γin = {x ∈ ∂Ω : b · n < 0}, Γout = ∂Ω\Γin, (1.2)

where n is the unit outward normal vector on the boundary. The model (1.1) describes a

convection-diffusion problem with convection term b ·∇u and diffusion term κ1∇α,λ
x u+κ2∇β,λ

y u

in horizontal and vertical directions respectively [17, 28]. Because of the existence of nonlocal

operators ∇α,λ
x and ∇β,λ

y , the local boundary ∂Ω itself cannot be hit by the majority of discon-

tinuous sample trajectories; based on this physical implication, this problem should be specified

the generalized Dirichlet boundary conditions, i.e., in the complementary of Ω [17,18,21]. Note

that if κ1 = κ2 and α = β, the diffusion term will not reduce to a two-dimensional fractional

Laplacian [17]. The function f ∈ L2(J ;L2(Ω)) is a source term; the convection coefficient b

is assumed to be continuous and satisfy ∇ · b = 0, and the initial function u0 ∈ L2(Ω). The

tempered fractional operator ∇α,λ
x is defined from [9] and will be shown in the next section.

Compared with non-tempered case, the tempered operator ∇α,λ
x characterizes the physical re-

ality that the jump length of a particle will not be arbitrarily large [41]. As for the discussion

of the adaptivity of the fractional problems, we start from the steady state version of (1.1) with

b = 0. The first part of the paper focuses on designing the DG scheme of (1.1) with genuinely

triangular grids, and offering explicit theoretical analyses. Being different from [33], which con-

structs the LDG scheme by rewriting the fractional equation as a first order system, we adopt

the primal DG methods, namely interior penalty (IP) method, still keeping the advantages over

the classical continuous Galerkin method in facilitating hp-adaptivity and yielding block diag-

onal mass matrices in time-dependent problems. Generally, the non-ignorable drawback of the

IP method is to specify sufficient large penalty parameter for guaranteeing numerical stability,

which degrades the performance of the iterative solver of the linear system [36]. Fortunately,

for the (tempered) fractional equations, this drawback disappears, since the schemes are stable


