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Abstract

The key aim of this paper is to show the strong convergence of the truncated Euler-

Maruyama method for neutral stochastic differential delay equations (NSDDEs) with

Markovian switching (MS) without the linear growth condition. We present the truncat-

ed Euler-Maruyama method of NSDDEs-MS and consider its moment boundedness under

the local Lipschitz condition plus Khasminskii-type condition. We also study its strong

convergence rates at time T and over a finite interval [0, T ]. Some numerical examples are

given to illustrate the theoretical results.
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1. Introduction

Due to better explanations of the phenomena, stochastic differential equations (SDEs) and

stochastic differential delay equations (SDDEs) which are more efficient and reliable models

in dynamical systems receive more and more attention recently. Systems with Markovian

switching which were introduced by Kac and Krasovskii (see in [6]) have become a powerful tool

in the modelling of practical systems (see in [7, 21] and the references therein). The structures

and parameters of the underlying neutral stochastic differential delay equations (NSDDEs)

may change abruptly because of environmental disturbances etc. We use the continuous-time

Markovian chain r(t) to model such abrupt changes. Thus, the underlying NSDDE

d[x(t) −D(x(t− τ))] = F (x(t), x(t − τ)) dt+G (x(t), x(t − τ)) dw(t) (1.1)

becomes the following NSDDE with Markovian switching (MS), abbreviated as NSDDE-MS

d[x(t)−D(x(t − τ), r(t))] = F (x(t), x(t − τ), r(t)) dt+G (x(t), x(t − τ), r(t)) dw(t). (1.2)

Since most SDEs-MS and SDDEs-MS have no explicit solutions, numerical methods to

approximate the underlying solutions become a useful technique. There are many results con-

cerned with the numerical solutions of SDEs-MS and SDDEs-MS in recent years (see e.g.,

[11, 13, 15, 19, 20, 25–27, 31]). Up to now, most of the strong convergence theories are consid-

ered under the global Lipschitz condition or the local Lipschitz condition and the linear growth
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condition. In 2003, Kolmanovskii et al. [8] discussed some important properties of the solu-

tions e.g. boundedness and stability for NSDDEs-MS under Global Lipschitz and linear growth

condition. Some numerical solutions to NSDDEs-MS were also discussed in [23, 24, 30]. How-

ever, lots of NSDDEs-MS do not satisfy the linear growth condition and there are a few results

about NSDDEs-MS without linear growth condition (see, e.g., [9,10,22] and the references cited

therein). As we know, the efficient explicit Euler schemes of SDEs (even without Markovian

switching) can not be convergent in strong sense with the super-linearly growing drift coeffi-

cients, see for example [4]. In 2012, Hutzethaler et al. presented tamed Euler method which can

solve this problem [5]. In [20], Nguyen et al. proposed tamed-Euler method for hybrid stochas-

tic differential equations with Markovian switching. In 2015 and 2016, Mao [17, 18] presented

the truncated Euler-Maruyama (EM) method for SDEs and gave its convergence rate. The

truncated (EM) method has been discussed intensively by some authors (see, e.g., [1, 3, 12]).

Recently, we established the strong convergence theory of the partially truncated EM method

for a class of SDDEs [28], and considered convergence rates of the truncated EM method for

stochastic functional differential equations (SFDEs) in [29] under the local Lipschitz condition

plus the Khasminskii-type condition. Though there are many papers on numerical methods for

NSDDEs-MS. Up to now, there is little numerical theory on NSDDEs-MS under local Lipschitz

condition and Khasminskii-type condition. Obviously, NSDDEs-MS is a generalization of SDEs

and SDDEs. However, some new difficulties will appear due to the nonlinear growth condition.

Owning to cheap computational cost, explicit numerical methods are indeed to be discussed.

Our aim here is to develop the truncated EM method of NSDDEs-MS under local Lipschitz

condition and Khasminskii-type condition. For the convenience, we will, in Section 2, develop

the truncated EM method. We will study the moment boundedness in Section 3 and the

convergence rate of the truncated EM method in Section 4, respectively. Some numerical

examples are given in Section 5. The conclusion of our paper is presented in Section 6.

2. The Truncated Euler-Maruyama Method

Throughout this paper, assume that (Ω,F ,{F t}t≥0,P) denotes a complete probability space

with a filtration {Ft}t≥0 satisfying the usual conditions (i.e, it is right continuous and increasing

while F0 contains all P-null sets). Let E be the expectation corresponding to P. Assume

that w(t) = (w1(t), w2(t), · · · , wm(t))T is an m-dimensional Brownian motion defined on the

probability space. Let | · | denote both Euclidean norm in R
n and the trace norm in R

n×m.

Denote by C([−τ, 0],Rn) the family of continuous functions from [−τ, 0] to R
n with the norm

‖ϕ‖ = sup−τ≤u≤0 |ϕ(u)|. For a, b ∈ R, we use a ∨ b and a ∧ b for max{a, b} and min{a, b},
respectively. If D is a set of Ω, its indicator function is denoted by 1D. ⌊x⌋ denotes the biggest

integer which is not bigger than x.

Let r(t) (t ≥ 0) be a right-continuousMarkovian chain on the probability space (Ω,F ,{F t}t≥0,

P), taking values in a finite state space S = {1, 2, · · · , Q} with Γ = (γij)Q×Q given by

P{(r(t+∆)) = j|r(t) = i} =

{

γij∆+ o(∆), if i 6= j,

1 + γij∆+ o(∆), if i = j,
(2.1)

where ∆ > 0. Here γij ≥ 0 is the transition from i to j if i 6= j, while γii = −∑
j 6=i

γij .

Assume that the Markovian chain r(t) is independent of the Brownian motion w(t). It is

known that almost every sample path of r(t) is a right-continuous step function with a finite


