
Commun. Comput. Phys.
doi: 10.4208/cicp.OA-2020-0165

Vol. 28, No. 5, pp. 1671-1706
November 2020

Dying ReLU and Initialization: Theory and

Numerical Examples

Lu Lu1,†, Yeonjong Shin2,∗,†, Yanhui Su3 and George Em Karniadakis2

1 Department of Mathematics, Massachusetts Institute of Technology, Cambridge,
MA 02139, USA.
2 Division of Applied Mathematics, Brown University, Providence, RI 02912, USA.
3 College of Mathematics and Computer Science, Fuzhou University, Fuzhou, Fujian
350116, China.

Received 26 August 2020; Accepted 14 October 2020

Abstract. The dying ReLU refers to the problem when ReLU neurons become inactive
and only output 0 for any input. There are many empirical and heuristic explanations
of why ReLU neurons die. However, little is known about its theoretical analysis. In
this paper, we rigorously prove that a deep ReLU network will eventually die in prob-
ability as the depth goes to infinite. Several methods have been proposed to alleviate
the dying ReLU. Perhaps, one of the simplest treatments is to modify the initializa-
tion procedure. One common way of initializing weights and biases uses symmetric
probability distributions, which suffers from the dying ReLU. We thus propose a new
initialization procedure, namely, a randomized asymmetric initialization. We show
that the new initialization can effectively prevent the dying ReLU. All parameters re-
quired for the new initialization are theoretically designed. Numerical examples are
provided to demonstrate the effectiveness of the new initialization procedure.

AMS subject classifications: 60J05, 62M45, 68U99

Key words: Neural network, Dying ReLU, Vanishing/Exploding gradient, Randomized asym-
metric initialization.

1 Introduction

The rectified linear unit (ReLU), max{x,0}, is one of the most successful and widely-used
activation functions in deep learning [30, 35, 40]. The success of ReLU is based on its su-
perior training performance [16, 47] over other activation functions such as the logistic

†L. Lu and Y. Shin contributed equally to this work.
∗Corresponding author. Email addresses: lu lu@mit.edu (L. Lu), yeonjong shin@brown.edu (Y. Shin),
suyh@fzu.edu.cn (Y. Su), george karniadakis@brown.edu (G. E. Karniadakis)

http://www.global-sci.com/cicp 1671 c©2020 Global-Science Press



1672 L. Lu et al. / Commun. Comput. Phys., 28 (2020), pp. 1671-1706

sigmoid and the hyperbolic tangent [15, 31]. The ReLU has been used in various appli-
cations including image classification [29, 49], natural language processes [33], speech
recognition [23], and game intelligence [44], to name a few.

The use of gradient-based optimization is inevitable in training deep neural networks.
It has been widely known that the deeper a neural network is, the harder it is to train
[9, 46]. A fundamental difficulty in training deep neural networks is the vanishing and
exploding gradient problem [6, 17, 39]. The dying ReLU is a kind of vanishing gradient,
which refers to a problem when ReLU neurons become inactive and only output 0 for
any input. It has been known as one of the obstacles in training deep feed-forward ReLU
neural networks [1, 50]. To overcome this problem, a number of methods have been
proposed. Broadly speaking, these can be categorized into three general approaches.
One approach modifies the network architectures. This includes but not limited to the
changes in the number of layers, the number of neurons, network connections, and acti-
vation functions. In particular, many activation functions have been proposed to replace
the ReLU [7, 20, 28, 33]. However, the performance of other activation functions varies
on different tasks and data sets [40] and it typically requires a parameter to be turned.
Thus, the ReLU remains one of the popular activation functions due to its simplicity and
reliability. Another approach introduces additional training steps. This includes several
normalization techniques [4, 24, 42, 51, 53] and dropout [45]. One of the most successful
normalization techniques is the batch normalization [24]. It is a technique that inserts
layers into the deep neural network that transform the output for the batch to be zero
mean unit variance. However, batch normalization increases by 30% the computational
overhead to each iteration [34]. The third approach modifies only weights and biases
initialization procedure without changing any network architectures or introducing ad-
ditional training steps [15, 20, 31, 34, 43]. The third approach is the topic of our work
presented in this paper.

The intriguing ability of gradient-based optimization is perhaps one of the major con-
tributors to the success of deep learning. Training deep neural networks using gradient-
based optimization fall into the nonconvex nonsmooth optimization. Since a gradient-
based method is either a first- or a second-order method, and once converged, the opti-
mizer is either a local minimum or a saddle point. The authors of [12] proved that the
existence of local minima poses a serious problem in training neural networks. Many
researchers have been putting immense efforts to mathematically understand the gra-
dient method and its ability to solve nonconvex nonsmooth problems. Under various
assumptions, especially on the landscape, many results claim that the gradient method
can find a global minimum, can escape saddle points, and can avoid spurious local min-
ima [2,8–10,13,14,25,32,52,55,57]. However, these assumptions do not always hold and
are provably false for deep neural networks [3,26,41]. This further limits our understand-
ing on what contributes to the success of the deep neural networks. Often, theoretical
conditions are impossible to be met in practice.

Where to start the optimization process plays a critical role in training and has a sig-
nificant effect on the trained result [36]. This paper focuses on a particular kind of bad


