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Abstract. In this paper, a viscous Cahn-Hilliard equation with logarithmic Flory-
Huggins energy potential is solved numerically by using a convex splitting scheme.
This numerical scheme is based on the Backward Differentiation Formula (BDF)
method in time and mixed finite element method in space. A regularization procedure
is applied to logarithmic potential, which makes the domain of the regularized func-
tion F(u) to be extended from (−1,1) to (−∞,∞). The unconditional energy stability
is obtained in the sense that a modified energy is non-increasing. By a carefully the-
oretical analysis and numerical calculations, we derive discrete error estimates. Sub-
sequently, some numerical examples are carried out to demonstrate the validity of the
proposed method.
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1 Introduction

The Cahn-Hilliard (CH) equation which was first introduced by Cahn-Hilliard [1–3] de-
scribes the phase separation and coarsening phenomena in non-uniform systems such
as alloys, glasses and polymer mixtures. The Cahn-Hilliard equation has been used as
a model for various problems, whose applications are very extensive. We review some
physical and industrial applications of Cahn-Hilliard model: microphase separation of
diblock copolymers [4]; spinodal decomposition [5]; image inpainting [6]; phase-field
modeling of tumor growth [7]; volume reconstruction [8]; topology optimization [9]; co-
continuous binary polymer microstructures [10]; microstructures with elastic inhomo-
geneity [11], and multiphase fluid flows [12–14].
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Numerical methods for solving the Cahn-Hilliard equation provide an important tool
for studying the dynamics described by the Cahn-Hilliard system, which have been
extensively investigated. For the spatial discretization, a series of methods have been
developed and applied. Finite difference methods and spectral methods [15–17] were
proposed for rectangular regions. The finite element method can be used for the gen-
eral domain of complex geometries [18–20]. Non-conforming elements or discontinu-
ous Galerkin methods were proposed in [21–24]. For time discretization, energy stable
methods have attracted more and more attention in the study of Cahn-Hilliard equa-
tions. Convex splitting method [25–27] is a very effective energy stable method, which
is usually nonlinear. Stabilized semi-implicit methods [28–30] are linear schemes, which
are also energy stable. A technique called Invariant Energy Quadratization (IEQ) which
was successfully applied to different phase-field models by authors [31], was extended to
handle the Cahn-Hilliard equation in [32, 33]. By introducing a scalar auxiliary variable
(SAV), Shenjie [34] proposed a numerical technique to deal with nonlinear terms in gra-
dient flows, which construct efficient and robust energy stable schemes for a large class
of gradient flows [35, 36]. Exponential time differencing (ETD) method whose approx-
imation is stabilized semi-implicit methods has been used in solving phase field equa-
tions [37, 38]. It is notice that the convex splitting method with nonlinear scheme is more
accurate in comparison to above mentioned linear schemes.

The most of developed numerical algorithms mainly focused on the discretization of
the polynomial potential for the Cahn-Hilliard equation. However, the free energy with
the logarithmic potential is often considered to be more physically realistic than that with
a polynomial free energy, because the former is derived from regular or ideal solution
theories [39]. Dong and Wang et al. [40, 41] presented finite difference numerical scheme
for the Cahn-Hilliard equation with a logarithmic Flory Huggins energy potential, which
is unconditionally stabile and gave error estimates. Thomas P. Witelski [42] focused on
the discussion of important qualitative features of the solutions of the nonlinear singular
Cahn-Hilliard equation with degenerate mobility for the Flory-Huggins-deGennes free
energy model. John and James [43] presented finite element method of the Cahn-Hilliard
equation with a logarithmic free energy and non-degenerate concentration dependent
mobility. Recently. Du et al. [44] discussed Allen-Cahn equation with logarithmic Flory-
Huggins Potential based on ETD scheme, which could preserve maximum bound prin-
ciple of Allen-Cahn type phase field equations and has applied to the Cahn-Hilliard [45]
equation and epitaxial thin film equations [37]. More numerical methods for phase-field
equations with logarithmic Flory-Huggins Potential can be also found in [46, 47].

Recently, researchers have devoted tremendous efforts to the relaxed Cahn-Hilliard
equation, i.e., the viscous Cahn-Hilliard equation. Formally, the governing equation of
the viscous Cahn-Hilliard equation is slightly different from the Cahn-Hilliard equation
by incorporating one extra terms i.e., a strong damping (or viscosity) term. The vis-
cous term was first proposed by Novick-Cohen [48] in order to introduce an additional
regularity and some parabolic smoothing. It can be viewed as a singular limit of the
phase field equations for phase transitions [49]. Significantly despite a great deal of




