Eigenvalues of Fourth-order Singular Sturm-Liouville Boundary Value Problems*

Lina Zhou^{1,†}, Weihua Jiang² and Qiaoluan Li¹

Abstract In this paper, by using Krasnoselskii's fixed-point theorem, some sufficient conditions of existence of positive solutions for the following fourth-order nonlinear Sturm-Liouville eigenvalue problem:

$$\begin{cases} \frac{1}{p(t)}(p(t)u^{\prime\prime\prime})'(t) + \lambda f(t,u) = 0, t \in (0,1), \\ u(0) = u(1) = 0, \\ \alpha u^{\prime\prime}(0) - \beta \lim_{t \to 0^+} p(t)u^{\prime\prime\prime}(t) = 0, \\ \gamma u^{\prime\prime}(1) + \delta \lim_{t \to 1^-} p(t)u^{\prime\prime\prime}(t) = 0, \end{cases}$$

are established, where $\alpha, \beta, \gamma, \delta \geq 0$, and $\beta \gamma + \alpha \gamma + \alpha \delta > 0$. The function p may be singular at t = 0 or 1, and f satisfies Carathéodory condition.

Keywords Sturm-Liouville problems, Eigenvalue, Krasnoselskii's fixed-point theorem.

MSC(2010) 34B15, 34B25.

1. Introduction

In this paper, we will study the existence of positive solutions for the following fourth-order nonlinear Sturm-Liouville eigenvalue problem:

$$\begin{cases} \frac{1}{p(t)}(p(t)u''')'(t) + \lambda f(t, u) = 0, & t \in (0, 1), \\ u(0) = u(1) = 0, \\ \alpha u''(0) - \beta \lim_{t \to 0^+} p(t)u'''(t) = 0, \\ \gamma u''(1) + \delta \lim_{t \to 1^-} p(t)u'''(t) = 0, \end{cases}$$

$$(1.1)$$

where $\lambda>0$ is a parameter, $\alpha,\beta,\gamma,\delta\geq 0$ are some constants satisfying $\beta\gamma+\alpha\gamma+\alpha\delta>0,\ p\in C^1((0,1),(0,+\infty))$ satisfying $\int_0^1\frac{ds}{p(s)}<+\infty,$ and $f:[0,1]\times R^+\to R^+$ satisfies Carathéodory condition. From the above conditions, the function p may be singular at t=0 or 1.

[†]the corresponding author.

Email address: lnazhou@163.com(L. Zhou)

¹School of Mathematical Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China

 $^{^2{\}rm College}$ of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China

^{*}The authors were supported by the Natural Science Foundation of China (11971145, 11775169), the Natural Science Foundation of Hebei Province (A2019205133, A2018208171).

Sturm-Liouville boundary problems have been widely investigated in various fields, such as mathematics, physics and meteorology. In recent decades, a vast amount of research was done on the existence of positive solutions of Sturm-Liouville boundary value problems. Within this development, they paid attention to the theory of eigenvalues and eigenfunctions of Sturm-Liouville problems [2-18]. In particular, many authors were interested in the nonlinear singular Sturm-Liouville problems [10-16]. In [10], Yao et al. proved that the BVP (1.1) has one or two positive solutions for some λ under the assumptions $f_0 = f_\infty = 0$ or $f_0 = f_\infty = \infty$. In [13], by a new comparison theorem, Zhang et al. proved that the BVP(1.1) has at least a positive solution for large enough λ under the assumptions:

- (1) $p \in C^1((0,1),(0,+\infty))$ and $\int_0^1 \frac{ds}{p(s)} < +\infty$;

- (2) $f(t, u) \in C((0, 1) \times (0, +\infty), [0, +\infty))$ is decreasing in u; (3) For any $\mu > 0$, $f(t, \mu) \neq 0$ and $0 < \int_0^1 k(s)p(s)f(s, \mu s(1-s))ds < +\infty$; (4) For any $u \in [0, +\infty)$, $\lim_{\mu \to +\infty} \mu f(t, \mu u) = +\infty$ uniformly on $t \in (0, 1)$.

In this paper, we consider the existence of positive solutions of the BVP(1.1), under the following conditions:

- (H_1) $p \in C^1((0,1),(0,+\infty))$ and $\int_0^1 \frac{ds}{p(s)} < +\infty$; (H_2) $f:[0,1] \times R^+ \to R^+$ satisfies Carathéodory condition, that is $f(\cdot,u)$ is measurable for each fixed $u \in \mathbb{R}^+$, and $f(t,\cdot)$ is continuous for a.e. $t \in [0,1]$;
- (H_3) for any r>0, there exists $h_r(t)\in L^1[0,1]$, such that $f(t,u)\leq h_r(t)$, a.e. $t \in [0, 1]$, where $u \in [0, r]$, and $0 < \int_0^1 k(s)p(s)h_r(s) < +\infty$.

By Krasnoselskii's fixed-point theorem, two main results are obtained under $(H_1) - (H_3).$

2. Preliminaries

In this section, we present some necessary definitions, theorems and lemmas.

Definition 2.1. A function u is called a solution of the BVP(1.1) if $u \in C^3([0,1],$ $[0,+\infty)$) satisfies $p(t)u'''(t) \in C^1([0,1],[0,+\infty))$ and the BVP(1.1). Also, u is called a positive solution if u(t) > 0 for $t \in [0,1]$ and u is a solution of the BVP (1.1). For some λ , if the BVP (1.1) has a positive solution u, then λ is called an eigenvalue and u is called a corresponding eigenfunction of the BVP (1.1).

Theorem 2.1. ([1], [19]) Let X be a real normal linear space, and let $P \subset X$ be a cone in X. Assume Ω_1, Ω_2 are relatively open subsets of X with $0 \in \Omega_1 \subset \overline{\Omega}_1 \subset \Omega_2$, and let $T: \overline{\Omega}_2 \to P$ be a completely continuous operator such that, either

- (1) $||Tu|| \le r_1, u \in \partial \Omega_1; ||Tu|| \ge r_2, u \in \partial \Omega_2 \text{ or }$
- (2) $||Tu|| \ge r_1, u \in \partial \Omega_1; ||Tu|| \le r_2, u \in \partial \Omega_2.$

Then T has a fixed point in $P \cap (\overline{\Omega}_2 \setminus \Omega_1)$.

In this paper, we always make the following assumption:

$$(H_1)$$
 $p \in C^1((0,1),(0,+\infty))$ and $\int_0^1 \frac{ds}{p(s)} < +\infty$.

Now we denote by H(t, s) and G(t, s), respectively, the Green's functions for the following boundary value problems:

$$\begin{cases}
-u'' = 0, 0 < t < 1, \\
u(0) = u(1) = 0,
\end{cases}$$