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Abstract. We consider reduced order modelling of elastodynamics with proper or-
thogonal decomposition and isogeometric analysis, a recent novel and promising dis-
cretization method for partial differential equations. The generalized-α method for
transient problems is used for additional flexibility in controlling high frequency dissi-
pation. We propose a fully discrete scheme for the elastic wave equation with isogeo-
metric analysis for spatial discretization, generalized-α method for time discretization,
and proper orthogonal decomposition for model order reduction. Numerical conver-
gence and dispersion are shown in detail to show the feasibility of the method. A va-
riety of numerical examples in both 2D and 3D are provided to show the effectiveness
of our method.
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1 Introduction

Elasticity models are essential in applied mechanics and engineering. The temporal char-
acteristics of elasticity have many applications in elastodynamics, e.g., building structure
analysis [1], marine survey [2], geophysics [24, 25] and seismology [18, 26]. Numerical
approaches for such problems include finite elements [27, 28], spectral elements [29, 30],
mortar elements [31, 32], discontinuous Galerkin method [33, 34], etc. High accuracy can
be achieved with large temporal or spatial resolution. The computational costs of dis-
cretization methods for such models with time, physical, geometry parameters are high
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when either time step or spatial size is relatively small. Of course, we can reduce the
number of degrees of freedom by adaptive methods with locally refining the meshes.
However, a posterior error estimates are not easy to be obtained for complex models
with real applications. For real-time simulations and parameter optimization problems,
rapid evaluation is essentially required but it is hard to achieve when the number of de-
grees of freedom of the discretized system is large. In such cases, we therefore resort to
reduced order modeling [3].

Proper orthogonal decomposition (POD) is one popular reduced order modeling ap-
proach for problems of various interests in engineering such as turbulent flows [4, 39],
weather forecasting and optimal control problems (see [3]). POD has been used widely
in different fields with different names, e.g. principle component analysis in statistics
and Karhunen-Loeve expansion in stochastic analysis. The combination of POD with
Galerkin methods for time-dependent partial differential equations (PDEs) [5–7] extract
pertinent information of the model system from the high-fidelity instances. The so-called
snapshots are obtained for the construction of a low-dimensional basis together with the
corresponding field information. A low-dimensional system which contains most infor-
mation of the original system is built through the new basis. The error between the nu-
merical solution from POD-Galerkin method and the exact solution consists of two parts,
i.e., the error between snapshot and exact solution and the error between POD solution
and snapshot [8, 9]. High-fidelity approximations obtained from a numerical discretiza-
tion method for PDEs are crucial for obtaining accurate snapshots and POD-Galerkin
solutions.

As an emerging method in recent years, Isogeometric analysis (IGA) [13] has been
successfully applied to various fields including structural mechanics [12], fluid dynam-
ics [10], acoustics [9, 37], electromagnetism [11], etc. IGA represents a generalization of
the isoparametric finite element method and uses NURBS as basis functions, which pos-
sess advantages of exact geometry representation, high global regularity (up to Cp−1-
continuous with p denoting the degree of the piecewise polynomials of the basis), and
convenient integration into CAD software using NURBS design workflow. Complex
multi-patch domains can be partitioned exactly in IGA. Moreover, efficient h-, p-, k- re-
finements and hierarchical scheme [40] can be used to increase accuracy and flexibility of
numerical solutions.

The motivation of this paper stems from the fact that the accuracy of the reduced order
solution obtained with a POD-Galerkin method first requires snapshots’ high-fidelity at
a reasonable expense of computational efforts. IGA can produce highly accurate numer-
ical solutions for PDEs efficiently. The natural combination of IGA and POD has been
successfully applied in parabolic problems [8, 42], convection dominated convection-
diffusion-reaction [36], acoustic wave equation [9] and shape optimization problem [41].
The paper continues the previous works [8,9,36] and generalizes this model order reduc-
tion method for acoustic wave [9] to elastodynamics. We consider numerical dispersion
of the method here. Dispersion analysis reveals how accurate the numerical schemes we
proposed are with respect to different wave vectors. Dispersion analysis for vibrations


