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Abstract

This paper focuses on a fast and high-order finite difference method for two-dimensional

space-fractional complex Ginzburg-Landau equations. We firstly establish a three-level

finite difference scheme for the time variable followed by the linearized technique of the

nonlinear term. Then the fourth-order compact finite difference method is employed to

discretize the spatial variables. Hence the accuracy of the discretization is O(τ 2 + h4
1 +

h4
2) in L2-norm, where τ is the temporal step-size, both h1 and h2 denote spatial mesh

sizes in x- and y- directions, respectively. The rigorous theoretical analysis, including the

uniqueness, the almost unconditional stability, and the convergence, is studied via the

energy argument. Practically, the discretized system holds the block Toeplitz structure.

Therefore, the coefficient Toeplitz-like matrix only requires O
(

M1M2

)

memory storage,

and the matrix-vector multiplication can be carried out in O
(

M1M2(logM1 + logM2)
)

computational complexity by the fast Fourier transformation, where M1 and M2 denote

the numbers of the spatial grids in two different directions. In order to solve the resulting

Toeplitz-like system quickly, an efficient preconditioner with the Krylov subspace method

is proposed to speed up the iteration rate. Numerical results are given to demonstrate the

well performance of the proposed method.
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1. Introduction

In this paper, we develop a fast high-order compact finite difference scheme for two-dimensional

space-fractional complex Ginzburg-Landau equations [32] in the truncated domain as follows
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∂tu− (ν + iη)(∂α
x + ∂β

y )u+ (κ+ iζ)|u|2u− γu = 0, (x, y) ∈ Ω, 0 < t 6 T, (1.1)

u(x, y, t) = 0, (x, y) ∈ R
2\Ω, 0 < t 6 T, (1.2)

u(x, y, 0) = ϕ(x, y), (x, y) ∈ R
2, (1.3)

where 1 < α, β 6 2, ν > 0, κ > 0, η, ζ, γ are given real constants, Ω = (xl, xr) × (yd, yu)

is the rectangular region with the boundary ∂Ω, i =
√
−1 is the imaginary unit, u(x, y, t) is

the complex-valued function, and ϕ(x, y) is a given smooth function with compact support

vanishing in R
2\Ω. Furthermore, ∂α

x in (1.1) denotes the Riesz fractional derivative operator

and is defined as [8]

∂α
x u(x, y, t) = − 1

2 cos(απ/2)Γ(2 − α)

∂2

∂x2

∫

∞

−∞

|x− ξ|1−αu(ξ, y, t)dξ,

or, equivalently,

∂α
x u(x, y, t) = − 1

2 cos(απ/2)

[

−∞Dα
xu(x, y, t) +x Dα

+∞
u(x, y, t)

]

,

where −∞Dα
xu(x, y, t) denotes the left Riemann-Liouville fractional derivative [25]

−∞Dα
xu(x, y, t) =

1

Γ(2− α)

∂2

∂x2

∫ x

−∞

u(ξ, y, t)

(x− ξ)α−1
dξ,

and xD
α
+∞

u(x, y, t) denotes the right Riemann-Liouville fractional derivative

xD
α
+∞

u(x, y, t) =
1

Γ(2− α)

∂2

∂x2

∫ +∞

x

u(ξ, y, t)

(ξ − x)α−1
dξ.

Analogously,

∂β
y u(x, y, t) = − 1

2 cos(βπ/2)Γ(2− β)

∂2

∂y2

∫

∞

−∞

|y − ξ|1−βu(x, ξ, t)dξ

is defined.

Problems (1.1)–(1.3) were firstly proposed by Tarasov and Zaslavsky in recent years [30,31]

due to the fast development of fractional quantum mechanics [13,14], which are mainly related

to the quantum phenomena in fractal environments. Compared with the conventional complex

Ginzburg-Landau equations arising from the fractality of the Brownian trajectories [1], fraction-

al complex Ginzburg-Landau equations originate from the variational Euler-Lagrange equation

for fractal media over the Lévy paths [7, 35]. In the past few years, the theoretical properties

of the fractional complex Ginzburg-Landau equations have been extensively investigated; for

example, the well-posedness, dynamics and nviscid limit behavior of solution [9, 10, 26], the

asymptotic dynamics for two-dimensional case and the random attractor for the multiplica-

tive noise [19–21], the asymptotic analysis in the bounded domains [23], and exact and soliton

solutions [2, 18, 28].

There are a lot of works on the numerical solutions of the fractional complex Ginzburg-

Landau equations in the literature, specially for the one-dimensional cases; see [11, 15, 16, 33,

34, 38]. Nevertheless, only a few investigations for the multi-dimensional cases with higher-

order discretizations. Mohebbi [24] proposed a numerical algorithm based on Fourier spectral


