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Abstract

Precision matrix estimation is an important problem in statistical data analysis. This

paper proposes a sparse precision matrix estimation approach, based on CLIME estimator

and an efficient algorithm GISSρ that was originally proposed for l1 sparse signal recov-

ery in compressed sensing. The asymptotic convergence rate for sparse precision matrix

estimation is analyzed with respect to the new stopping criteria of the proposed GISSρ

algorithm. Finally, numerical comparison of GISSρ with other sparse recovery algorithms,

such as ADMM and HTP in three settings of precision matrix estimation is provided and

the numerical results show the advantages of the proposed algorithm.
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1. Introduction

Covariance matrix and precision matrix estimation are two important problems in statistical

analysis and data science. The problems become more challenging for both theoretical analysis

and practical computation in high-dimensional setting when the number of variable dimension

p is relatively large compared to the sample size n. Therefore, effective estimation model and

methods are necessary to achieve a stable, efficient and accurate estimation facing big data

challenge.

Denote X = (X1, X2, · · · , Xp)
T by a p variate random vector. The covariance matrix and

precision matrix can be traditionally denoted by Σ0 and Ω0 = Σ−1
0 respectively. Assume an

independent and identically distributed n random samples {X1,X2, · · · ,Xn} are from the

distribution of X. The unbiased sample covariance matrix is the mostly used estimator of

covariance matrix, as defined in the following

Σn =
1

n− 1

n
∑

k=1

(Xk − X̄)(Xk − X̄)T ,
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where X̄ = 1
n

∑n
k=1 Xk denotes the sample mean. When p is larger than n, it is obvious that

Σn is singular and the estimation for Ω0 naturally becomes unstable and not well defined.

Estimation of precision matrix in high-dimensional setting has been studied for a long time.

For example, when the random variable X follows a certain ordering structure, methods based

on banding the Cholesky factor of the inverse of sample covariance matrix were studied in [2,33].

Penalized likelihood methods such as l1-MLE type estimators were studied in [12, 18, 36] and

the convergence rate in Frobenius norm was given by [30]. In [35], the authors established the

convergence rate for sub-Gaussian distribution cases. For more restrictive conditions, such as

mutual incoherence or irrepresentable conditions, [29] showed the convergence rates in elemen-

twise l∞ norm and spectral norm. To overcome the drawbacks that l1 penalty inevitably leads

to biased estimation, nonconvex penalty such as SCAD penalty [14, 21] was proposed [15, 38],

although it often requires high computational cost.

Recently, [8] proposed a new constrained l1 minimization approach called CLIME for sparse

precision estimation. Convergence rates in spectral norm, elementwise l∞ norm and Frobenius

norm were established under weaker assumptions and shown to be faster than those l1-MLE

estimators when the population distributions have polynomial-type tails. In addition, CLIME

has a computational advantage that each column of precision matrix estimation can be inde-

pendently computed in parallel. However, in [8], the columns are obtained by the algorithm

l1-magic [10] based on linear programming, which is still time-consuming in high dimensional

setting. More efficient approaches still need to be developed for practical high dimensional

applications.

In compressive sensing and sparse optimization community, many algorithms and related

theoretical results are developed for l1 minimization optimization problems [1,6,7,20,27,34,37].

Greedy inverse scale space flows (GISS) [24], originally stems from the adaptive inverse scale

(aISS) method [5], is a new sparse recovery approach combining the idea of greedy approach

and ℓ1 minimization. Compared to the aISS method, GISS method enjoys a higher efficiency.

GISSρ with ρ ≥ 1 being an acceleration factor, as a variant of GISS, can further accelerate

sparse solution recovery by increasing the support of the current iterate by many indices at

once.

In this article, we take the advantages of CLIME estimator framework and GISSρ algorithm

for compressive sensing and propose a new approach for sparse precision matrix estimation.

More specifically, we transfer the constraint bound in CLIME estimator to a tuning parameter

in the stopping criteria in GISSρ method. Convergence results in elementwise l∞ norm are

established under weak assumptions as [8]. Numerical experiments show the competitive ad-

vantages of the proposed algorithm in terms of computation time, on obtaining the same level

of sparsity and accuracy compared to other existing methods.

The rest of the paper is organized as follows. In Section 2, we firstly introduce basic notations

and simply revisit the CLIME estimator. In Section 3, we present our method, which derived

from CLIME estimator and GISSρ algorithm. In Section 4, we establish the theoretical analysis

with assumptions. Section 5 presents the numerical results including simulated experiments and

application on real data. The paper is concluded in Section 6 and the proof of the main results

can be found in Appendix.


