DELAY-DEPENDENT STABILITY OF LINEAR MULTISTEP METHODS FOR NEUTRAL SYSTEMS WITH DISTRIBUTED DELAYS*

Yuhao Cong

Shanghai Customs College, Shanghai 201204, China Email: yhcong@shu.edu.cn

Shouyan $Wu^{1)}$

Department of Mathematics, Zhejiang International Studies University, Hangzhou 310023, China Department of Mathematics, Shanghai Normal University, Shanghai 200234, China Email: wushouyanforever@163.com

Abstract

This paper considers the asymptotic stability of linear multistep (LM) methods for neutral systems with distributed delays. In particular, several sufficient conditions for delay-dependent stability of numerical solutions are obtained based on the argument principle. Compound quadrature formulae are used to compute the integrals. An algorithm is proposed to examine the delay-dependent stability of numerical solutions. Several numerical examples are performed to verify the theoretical results.

Mathematics subject classification: 65L05, 65L07, 65L20.

Key words: Neutral systems with distributed delays, Linear multistep methods, Delaydependent stability, Argument principle.

1. Introduction

In this paper, we investigate the asymptotic stability of numerical methods for neutral systems with distributed delays which belongs to neutral delay integro-differential equations (NDIDEs)

$$\begin{cases} \dot{x}(t) = Lx(t) + Mx(t - \tau) + N\dot{x}(t - \tau) \\ + \int_{-\tau}^{0} K(s)x(t + s)ds + \int_{-\tau}^{0} R(s)\dot{x}(t + s)ds, & t > 0, \\ x(s) = \varphi(s), & -\tau \le s \le 0 \end{cases}$$
 (1.1)

with the condition

$$||N|| + \int_{-\tau}^{0} ||R(s)|| ds \le \alpha < 1, \tag{1.2}$$

where $x(t) \in \mathbb{R}^d$ is an unknown vector, parameter matrices $L, M, N, K(s), R(s) \in \mathbb{R}^{d \times d}$ and delay τ is a positive number. Here $\varphi(t) \in C^1(-\tau,0]$, the entries $k_{ij}(s)$ of the matrix K(s) and the entries $r_{ij}(s)$ of the matrix R(s) are continuous on $[-\tau,0]$. NDIDEs plays an central role in a wide variety of scientific and technological fields, such as economics, population dynamics,

Received October 29, 2018 / Revised version received August 28, 2020 / Accepted November 17, 2020 / Published online March 8, 2021 /

¹⁾ Corresponding author

control theory and so on (see, e.g., [3,11,17–19]), and hence has come to intrigue researchers in numerical computation and analysis (see, e.g., [5,6,9,12,13]).

In recent years, there is a growing interest in the stability analysis of numerical methods for NDIDEs. Zhao et al. [31] studied the stability of linear θ -method and BDF method for linear NDIDEs. Yu et al. [26], Zhang and He [27] investigated the stability of the numerical solution derived from Runge-Kutta methods and one-leg methods for nonlinear NDIDEs of the "Hale's form", respectively. Wang et al. [22] obtained nonlinear stability conditions for the neutral multidelay-integro-differential equations (NMIDEs). However, the stability region in the above research is independent of the delay term and we call it delay-independent stability. On the contrary, the stability which has relationship with delays is referred as delaydependent stability and the stability analysis is much more difficult [2,15,16,24,25,30]. Wu and Gan [24] discussed the delay-dependent stability for the real coefficient linear test equations for NDIDEs. Zhang and Vandewalle [28] constructed the stability criteria for the asymptotic stability of Runge-Kutta and linear multistep methods for NMIDEs. Zhao et al. [29] analyzed the delay-dependent stability region of symmetric boundary value methods for the linear NDIDEs with four parameters. Then, Zhao et al. [30] derived the delay-dependent stability region of symmetric Runge-Kutta methods for NDIDEs. Up to now, few results on the delay-dependent stability for vector NDIDEs (1.1) have been presented in the literature.

It is well-known that the definition of D-stability, which is a kind of delay-dependent stability of numerical solutions for the delay differential equations given in literature [2, 10, 21], is too restrictive. For example, no A-stable natural Runge-Kutta methods for delay differential equations is D-stable. As a result, Hu and Mitsui [14] recently gave a novel definition for delay-dependent stability of numerical solutions referred as weak delay-dependent stability, which only requires that the difference scheme generated by a numerical method with a certain integer m arising in the stepsize $h = \tau/m$ is asymptotically stable. That is, the numerical solution is asymptotically stable, so long as there exists a natural number m for the stepsize $h = \tau/m$ which generates an asymptotically stable numerical solution. Furthermore, Hu and Mitsui obtained some sufficient conditions of delay-dependent stability of Runge-Kutta and linear multistep methods for delay differential equations of neutral type. In this paper, we focus our attention on the weak delay-dependent stability of linear multistep methods for the system (1.1) with condition (1.2).

Remark 1.1. When N = 0 and R(s) = 0, the system (1.1) degenerates into delay integrodifferential equations (DIDEs). For the delay-dependent stability of numerical methods for DIDEs, one can refer to [8,23].

The outline of the rest of the paper is as follows. First, several definitions and lemmas are reviewed in Section 2. Then, some new sufficient criteria of weak delay-dependent stability for linear multistep methods are suggested in Section 3. Numerical examples in Section 4 are presented to demonstrate the effectiveness of the theoretical results.

2. Preliminaries

In this section, we recall several definitions and lemmas which play a central role in the succeeding sections.

Now we introduce some notations. Throughout this paper, for a complex z, Re z and Im z denotes the real and imaginary parts of z, respectively. I stands for identity matrix, ||Q|| means