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OPTIMAL CONTROL PROBLEM OF AN SIR MODEL WITH
RANDOM INPUTS BASED ON A GENERALIZED POLYNOMIAL
CHAOS APPROACH

YOON-GU HWANG, HEE-DAE KWON, AND JEEHYUN LEE

Abstract. This paper studies the optimal control problem of a susceptibleinfectiousrecovered
(SIR) epidemic model with random inputs. We prove the existence and uniqueness of a solution
to the SIR random differential equation (RDE) model and investigate the numerical solution to
the model by using a generalized polynomial chaos (gPC) approach. We formulate the optimal
control problem of the SIR RDE model and consider the gPC Galerkin method to convert the
problem into an optimal control problem with high-dimensional ordinary differential equations.
Numerical simulations show that to effectively control an epidemic, vaccination should be given
at the highest rate in the first few days, and after that, vaccination should be stopped completely.
In addition, we observe that the optimal control function and the corresponding states are very
robust to the uncertainty of random inputs.
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1. Introduction

Mathematical models can help predict the dynamics of disease transmission and
evaluate the impact of control measures. The susceptible-infectious-recovered (SIR)
model proposed by O. Kermack and A. G. McKendrick in 1927 [18] is a simple de-
terministic model to describe an epidemic. The model divides the host population
into three compartments: susceptible (S), infectious (I), and recovered (R) indi-
viduals. Several studies have conducted outstanding surveys of basic compartment
models and explored key features of modified models [2, 7, 14].

However, real-world problems often involve uncertainty due to a lack of informa-
tion or measurement errors in the data, for example. The randomness in probability
theory is used to express uncertainty, and stochastic models have been developed
to better describe a complex phenomenon. The stochastic differential equation
(SDE) and the random differential equation (RDE) are known to be effective tools
in epidemiology. The SDE adds white noise to incorporate perturbation, and Ito
integration is the key technique for the analysis [12, 19, 25, 26, 27]. Random vari-
ables are employed to represent uncertain input, including parameters and initial
conditions, and the RDE is introduced as a result. In this research, we consider a
random differential equation for the SIR model [3, 31].

There are analytical and numerical approaches to figure out the property of a
solution to RDE models. The analytical one finds the probability density function
of a solution by using random variable transformation [8, 17, 28, 30]. Among
many numerical schemes to solve RDE models, Monte-Carlo simulation is the basic
algorithm to characterize the solution. Generalized polynomial chaos (gPC) [9,
32] and the stochastic collocation method [32, 33] are useful choices in particular
settings.
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Vaccination is one of the crucial interventions for reducing the spread of infectious
diseases. In order to minimize disease burdens, it is important to determine the
optimal vaccination policies to better allocate limited resources. Previous studies
applied optimal control techniques to derive an efficient vaccination strategy for
influenza outbreaks under specific circumstances [20, 21, 22, 23, 24, 34]. Lahrouz et
al. considered two types of control to reduce the number of infectious individuals:
treatment and preventive campaigns to avoid relapses [20]. Modified models were
introduced to incorporate seasonal forcing and age-structure, and optimal strategies
for vaccination, antiviral treatments, and social distancing were suggested in [21].
Li et al. proposed a model based on complex networks to discuss an effective
quarantine scheme [24] and others have investigated the distribution of vaccines
under limited resources using a model with group mixing [34]. Many researchers
have also applied control theory to develop optimal strategies for other diseases
including HIV, tuberculosis, and vector-borne diseases [1, 5, 15, 16].

The goal of this paper is to derive an optimal vaccination strategy using the
SIR model with random inputs. To achieve that, the gPC Galerkin method, which
can be applied to various numerical techniques and control theory, is employed. In
Section 2, we formulate the SIR RDE model with a random transmission rate and
initial conditions for a susceptible population. Then, the existence and uniqueness
of a solution to the model are analyzed. A brief introduction to gPC in Section 3
is followed by applying the stochastic Galerkin method using an orthogonal poly-
nomial basis to approximate a solution to the RDE model in Section 4. We also
compare the gPC Galerkin solution with Monte-Carlo simulation to evaluate the
quality of approximation. In Section 5, we explore an optimal control problem
that minimizes the number of infected individuals while considering intervention
costs. Finally, Section 6 presents the results from numerical simulations with sev-
eral distributions of random variables, and we conclude with a summary in Section
7.

2. The SIR model with random inputs

In this section, we introduce an SIR model with random coeflicients, and we
prove the existence and uniqueness of a solution to the model equation. The SIR
model consists of three compartments. The susceptible compartment, .S, represents
individuals who are susceptible to the disease, while the infectious compartment,
I, represents infected individuals who can infect susceptible people. The recovered
compartment, R, represents individuals who have recovered from the disease or
who have been immunized against the disease. The SIR model with random inputs
is given by the following random differential equation [3, 30, 31]:
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with initial conditions S(0) = Sp, I(0) = Iy and R(0) = Ry.

The positive parameter § denotes the transmission rate of the disease, and u
is vaccination efficacy. Infected individuals leave infectious class I at rate v. u
and v are positive constants. The control function u(t) indicates the rate at which
susceptible individuals are vaccinated, and its value is assumed to be in the range
[0,1]. Usually, the parameters and initial conditions are considered to be constants
in the deterministic model. In this paper, it is assumed that infection rate 8 and
the initial value of susceptible compartment Sy are functions of random variables
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