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A SECOND-ORDER EMBEDDED LOW-REGULARITY
INTEGRATOR FOR THE QUADRATIC NONLINEAR
SCHRODINGER EQUATION ON TORUS

FANGYAN YAO

Abstract. A new embedded low-regularity integrator is proposed for the quadratic nonlinear
Schrédinger equation on the one-dimensional torus. Second-order convergence in H” is proved
for solutions in C([0,T]; HY) with v > %, i.e., no additional regularity in the solution is required.
The proposed method is fully explicit and can be computed by the fast Fourier transform with
O(N log N) operations at every time level, where N denotes the degrees of freedom in the spatial
discretization. The method extends the first-order convergent low-regularity integrator in [I4] to
second-order time discretization in the case v > % without requiring additional regularity of the
solution. Numerical experiments are presented to support the theoretical analysis by illustrating
the convergence of the proposed method.
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1. Introduction

This paper is concerned with the development of low-regularity integrators for
the quadratic nonlinear Schrodinger (NLS) equation on the one-dimensional torus,
ie.,

0 i0pu(t, x) + Oggu(t,z) = pu*(t,z), t>0 and 2 € T = [0, 27],

u(0, ) = u’(z).

where u : RY x T — C is a complex-valued unknown function with initial value
u® € HY(T), v > 0, and p € R is a given constant. The well-posedness of the
equation has been proved in [I].

Time discretization of the nonlinear Schrédinger equation has been considered
in many papers with different methods. In general, classical time discretizations
require the solution to be in C([0,7]; H**2) and C([0,7]); H'**) in order to have
first- and second-order convergence in H7, respectively, i.e., two additional deriva-
tives in the solution are required for every order of convergence. The convergence of
time discretizations under these (or stronger) regularity conditions has been proved
for the finite difference methods [I'7], operator splitting [2, B, IT], and exponential
integrators [4].

In practical computations, the initial data may be polluted by nonsmooth
noises from the measurements. Accordingly, the development of low-regularity
integrators which can reduce the regularity requirement of the solution and has
attracted much attention from numerical analysts. Ostermann and Schratz [I4]
proposed a new exponential-type integrator for the cubic NLS equation in the
d-dimensional space, and proved its first-order convergence in H” for solutions
in C([0,T); H'*'), with v > 4. In one dimension, Wu and Yao [I8] proposed

2
a new time discretization which has first-order convergence in H?Y for solutions
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in C([0,T]; H?) with v > %, without requiring any additional regularity in the
solution. These articles are all concerned with first-order convergent low-regularity
integrators.

Knoller, Ostermann and Schratz [[4] proposed a second-order low-regularity
integrator which requires two and three additional derivatives in the solution in
one- and higher-dimensional spaces, respectively. In two- and higher-dimensional
spaces, the regularity requirement was relaxed to two additional derivatives by
Bruned and Schratz [3] and Ostermann, Wu and Yao [15] with different methods.

For convergence in L?, Ostermann, Rousset and Schratz [I2, 3] proved certain
fractional-order convergence of some filtered methods for solutions in C([0,T]; HY)
with v € (0,1]. Li and Wu [8] constructed a fully discrete low-regularity integrator
with first-order convergence in both time and space for solutions in C([0,7]; H').
Ostermann and Yao [I6] proposed a different fully discrete method with an error
estimate of O(727~2~¢ 4 N=7) for solutions in C([0,T]; H") with ~ € (1,1].

More recently, Wu and Zhao [[9, 20] introduced an embedded low-regularity
integrator for the Korteweg-de Vries (KdV) equation with first- and second-order
convergence in H7(T) for solutions in C'([0,7]; H**1) and C([0,T]; H"*3), respec-
tively. By using new harmonic analysis techniques, Li, Wu and Yao [g] proposed
a method for the KdV equation with %—order convergence in H” for solutions in
C([0,T]; HY) with v > 3, without requiring any additional derivatives in the so-
lution. For the modified KdV equation, Ning, Wu and Zhao [[1l] proposed a new
embedded low-regularity integrator and proved first-order convergence by requiring
the boundedness of one additional spatial derivative of the solution.

For the quadratic nonlinear Schrédinger equation on the one-dimensional torus,
Ostermann and Schratz [[4] proposed a low-regularity integrator with first-order
convergence in H? for solutions in C([0,T]; H”), v > 3. In the present paper, we
propose a new embedded low-regularity integrator with second-order convergence
in H" for solutions in C([0,T]; H"), v > 3. The construction of the method extends
the low-regularity integrators in [19] and [I5], which were originally proposed for the
KdV equation and cubic nonlinear Schrodinger equation, respectively. The proof
of convergence for the proposed method is based on harmonic analysis techniques.

The rest of this paper is organized as follows. The notations and the main
result are presented in Section 2. The construction of the low-regularity integrator
and the technical lemmas to be used in the convergence analysis are presented in
Section 3. The proof of the main theorem is presented in Section 4. Numerical
experiments are reported in Section 5. Some concluding remarks are presented in
Section 6.

2. Notations and main results

2.1. Some notations. We denote by (-,-) the inner product of L? = L?(T), i.e.,
(r9)= [ f@i@de,  figer
T
The Fourier transform ( fk)kez of a function f: T — C is defined by
~ 1 .
fr = %/Te_“mf(x) dz.

The inverse Fourier transform formula is given by

f(.’E) _ kaeikw.
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