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Abstract. In this paper, we are interested in the following nonlocal problem with crit-
ical exponent







−
(

a−b
∫

Ω

|∇u|2dx

)

∆u=λ|u|p−2u+|u|4u, x∈Ω,

u=0, x∈∂Ω,

where a,b are positive constants, 2< p<6, Ω is a smooth bounded domain in R
3 and

λ > 0 is a parameter. By variational methods, we prove that problem has a positive
ground state solution ub for λ>0 sufficiently large. Moreover, we take b as a parameter
and study the asymptotic behavior of ub when bց0.
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1 Introduction

We investigate the existence of positive ground state solutions of the following critical

nonlocal problem







−
(

a−b
∫

Ω

|∇u|2dx

)

∆u=λ|u|p−2u+|u|4u, x∈Ω,

u=0, x∈∂Ω,
(1.1)
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where a,b are positive constants, 2< p<6, Ω is a smooth bounded domain in R
3 (2∗=6

is the critical exponent in dimension three) and λ>0 is a parameter.

The energy functional associated to (1.1) is defined by

Ib,λ(u)=
a

2
‖u‖2− b

4
‖u‖4− λ

p

∫

Ω

|u|pdx− 1

6

∫

Ω

|u|6dx,

where ‖u‖2=
∫

Ω
|∇u|2dx. Then Ib,λ is well defined on H1

0(Ω) and belongs to C1(H1
0(Ω),R).

Obviously, critical points of Ib,λ are the weak solutions of (1.1). Here, we call u∈ H1
0(Ω)

is a weak solution of (1.1), if for any φ∈H1
0(Ω), it holds

(

a−b‖u‖2
)

∫

Ω

∇u∇φdx−λ
∫

Ω

|u|p−2uφdx−
∫

Ω

|u|4uφdx=0.

Moreover, a positive solution of (1.1) is called a positive ground state solution of (1.1), if

it possesses the least energy among all positive solutions.

In (1.1), if we replace a−b
∫

Ω
|∇u|2dx by a+b

∫

Ω
|∇u|2dx, it becomes to the following

critical Kirchhoff type problem







−
(

a+b
∫

Ω

|∇u|2dx

)

∆u=λ|u|p−2u+|u|4u, x∈Ω,

u=0, x∈∂Ω.
(1.2)

As well known that Kirchhoff type problem is presented by Kirchhoff [1] in 1883 as an

extension of the classical d’Alembert wave equation for free vibration of elastic strings.

Such kind of problem is often viewed as being nonlocal due to the appearance of the

term
∫

Ω
|∇u|2dx∆u, which implies that the equation is no longer a pointwise identity.

This causes some mathematical difficulties which make the study of such problem par-

ticularly interesting. During the past decade, there are many interesting existence results

of positive solutions to (1.2) via variational methods. For example, considering a general

nonlinearity instead of λ|u|p−2u with 2<p<6, Alves et al. [2] and Figueiredo [3] obtained

the existence and multiplicity of positive solutions of (1.2) under λ>0 is sufficiently large.

In the case 1< p< 2, Sun and Liu [4] got the existence of positive solution to (1.2) when

λ>0 is sufficiently small. For the singular case (that is, 0<p<1), Lei et al. [5] proved that

problem (1.2) has at least two positive solution for λ>0 small enough. For more related

results, we refer to [6-10] and the references therein.

On the other hand, the subcritical case of problem (1.1) has been considered in the

past few years by some scholars, for example [11-21]. In particular, the first existence and

multiplicity results of solutions for problem (1.1) without critical exponent was done by

Yin and Liu [11]. As they indicated in their paper, nonlocal problem like (1.1) (involving

a negative nonlocal term) provokes some difficulties essential different from those of the

Kirchhoff type problem. In [12], Lei et al. showed the existence of at least two positive


