doi: 10.4208/jpde.v36.n1.7 March 2023

Serrin-Type Overdetermined Problem in \mathbb{H}^n

GAO Zhenghuan¹, JIA Xiaohan² and YAN Jin^{3,*}

¹ Department of Mathematics, Shanghai University, Shanghai 200444, China.

² School of Mathematical Sciences, Xiamen University, Xiamen 361005, China.

³ School of Mathematical Sciences, University of Science and Technology of China,

Hefei 230025, China.

Received 16 January 2022; Accepted 11 March 2022

Abstract. In this paper, we prove the symmetry of the solution to overdetermined problem for the equation $\sigma_k(D^2u-uI) = C_n^k$ in hyperbolic space. Our approach is based on establishing a Rellich-Pohozaev type identity and using a *P* function. Our result generalizes the overdetermined problem for Hessian equation in Euclidean space.

AMS Subject Classifications: 35N25, 35B06, 35B50, 53C24

Chinese Library Classifications: 0175.25

Key Words: Overdetermined problems; hyperbolic space; P functions; Rellich-Pohozaev identity.

1 Introduction

In the seminal paper [1] Serrin established the symmetry of the solution to

$$\Delta u = n \tag{1.1}$$

in a bounded C^2 domain $\Omega \subset \mathbb{R}^n$ with

$$u=0 \quad \text{and} \quad u_{\gamma}=1 \quad \text{on } \partial \Omega, \tag{1.2}$$

where γ is the unit outer normal to $\partial\Omega$. If $u \in C^2(\overline{\Omega})$ is a solution to (1.1) and (1.2), then $u = \frac{|x|^2 - 1}{2}$ upto a translation and Ω is the unitary ball. The proof is based on the method of *moving planes* and it can be applied to more general uniformly elliptic equations. In [2] Weinberger provided an alternative proof by using maximum principle for P function and a Rellich-Pohozaev type identity.

http://www.global-sci.org/jpde/

^{*}Corresponding author. *Email addresses:* gzh@shu.edu.cn (Z.Gao), jiaxiaohan@xmu.edu.cn (X.Jia), yjorac -le@mail.ustc.edu.cn (J.Yan)

Serrin-Type Overdetermined Problem in \mathbb{H}^n

There have been many generalizations of Serrin and Weinberger's work to quasilinear elliptic equations (see, e.g., [3–5] and reference therein) and fully nonlinear equations such as Hessian equation and Weingarten curvature equation (see, e.g., [6–8]). In Euclidean space, the overdetermined boundary problem for $\sigma_k(D^2u) = C_n^k$ was studied in [6] by using a Rellich-Pohozaev type identity and some geometric inequalities and was also dealt in [8] by using method of moving planes. Using the *P* function $P = |Du|^2 - 2u$ as mentioned in [2,9] we can give an alternative proof which is parallel to Weinberger's.

Theorem 1.1 ([6]). Suppose $\Omega \subset \mathbb{R}^n$ is a C^2 bounded domain and $u \in C^3(\Omega) \cap C^2(\overline{\Omega})$ is a solution to the following problem

$$\begin{cases} \sigma_k(D^2 u) = C_n^k & \text{ in } \Omega, \\ u = 0 & \text{ on } \partial\Omega, \\ u_\gamma = c_0 & \text{ on } \partial\Omega, \end{cases}$$
(1.3)

with $k \in \{1, \dots, n\}$ and c_0 a positive constant. Then upto a translation, $u = \frac{|x|^2 - 1}{2}$ and Ω is a ball of radius c_0 .

In space forms, a few work has been done to generalize the Serrin's symmetry to equation $\Delta u + nKu = c$ using the method of moving planes or *P* functions and Rellich-Pohozaev type identities (see [10–14] and reference therein).

The hyperbolic space \mathbb{H}^n can be described as the warped product space $[0,\infty) \times \mathbb{S}^{n-1}$ equipped with the rotationally symmetric metric

$$g = dr^2 + h^2 g_{\mathbb{S}^{n-1}}, \tag{1.4}$$

where $h = \sinh r$, $g_{S^{n-1}}$ is the round metric on the n-1 dimensional sphere.

In the present paper, we consider the overdetermined problem below in hyperbolic space,

$$\begin{cases} \sigma_k (D^2 u - uI) = C_n^k & \text{ in } \Omega, \\ u = 0 & \text{ on } \partial \Omega, \\ u_\gamma = c_0 & \text{ on } \partial \Omega, \end{cases}$$
(1.5)

where Ω is a bounded C^2 domain of \mathbb{H}^n . Our result is the following:

Theorem 1.2. Let $\Omega \subset \mathbb{H}^n$ be a C^2 bounded domain and $u \in C^3(\Omega) \cap C^2(\overline{\Omega})$ be a solution to (1.5) with $k \in \{1, \dots, n\}$ and c_0 a positive constant. Then Ω is a geodesic ball B_R , and u is radially symmetric.

By maximum principle, u < 0 in Ω , and the solution to Dirichlet problem of $\sigma_k(D^2u - uI) = C_n^k$ is unique. In Theorem 1.2, if we assume the center of B_R is the origin, then $u(r) = \frac{\cosh r}{\cosh R} - 1$ is the unique solution to (1.5), where *r* is the distance from 0, *R* and c_0 satisfy the relationship $\frac{\sinh R}{\cosh R} = c_0$.