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Abstract

In this paper, we apply the Wasserstein-Fisher-Rao (WFR) metric from the unbalanced

optimal transport theory to the earthquake location problem. Compared with the quadrat-

ic Wasserstein (W2) metric from the classical optimal transport theory, the advantage of

this method is that it retains the important amplitude information as a new constraint,

which avoids the problem of the degeneration of the optimization objective function near

the real earthquake hypocenter and origin time. As a result, the deviation of the global

minimum of the optimization objective function based on the WFR metric from the true

solution can be much smaller than the results based on the W2 metric when there exists

strong data noise. Thus, we develop an accurate earthquake location method under strong

data noise. Many numerical experiments verify our conclusions.
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1. Introduction

The optimal transport theory is widely applied in seismology in recent years, leading to more

accurate inversion results in the field of geophysical inverse problems, e.g., earthquake location

and seismic tomography [11–13, 30, 31, 35, 52, 53]. In these models, appropriate seismic param-

eters should match the synthetic signals with the observations [36]. From the mathematical

point of view, an approximate relationship can be established between seismic parameters m

and synthetic seismic signals dsyn(m) by numerically calculating wave equations. Solving this

inverse problem requires m to minimize the difference between the synthetic dsyn(m) and the

observations dobs for a specific metric. The adjoint state method is widely applied to this PDE

constrained optimization problem [4–6,14,42–44,50]. The Fréchet gradient of the optimization

objective function can be obtained by comparing dobs with dsyn(m), which is used to update

the seismic parameters m.

In the past, limited by the computational power, the relationship between parametersm and

signals dsyn(m) was established based on the ray theory [17,46,51]. Under this high-frequency
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assumption, some finite frequency phenomena such as wave-front healing and scattering are

ignored [42], leading to inaccurate inversion results. With the rapid increase of computational

power in recent years, it gradually becomes possible to numerically calculate the wave equation

to obtain more accurate synthetic seismic signals dsyn(m), which mitigates the bias from the

high-frequency assumption and raise the inversion resolution reaching the wavelength scale

[32,36,42,44,54,56,57].

However, the traditional L2 norm based waveform inversion suffers from the cycle-skipping

problem [26]. Especially for the earthquake location problem, seismic signals are sensitive to

the perturbation of the origin time and the earthquake hypocenter. Thus, under the framework

of L2 norm, this point-to-point comparison between signals might generate numerous local

minimums, leading to inaccurate inversion results or excessive iteration steps [4, 12]. Based

on the optimal transport theory, the Wasserstein metric provides a new perspective to solve

these mentioned problems [4, 11, 12, 14, 30, 31, 37, 45, 52, 53]. By comparing signals globally,

the Wasserstein metric defined optimization objective function guarantees better convexity

property and mitigates the influence of noise. Thus, reasonably accurate inversion results

can be expected when the data is contaminated with high-intensity noise [4]. These accurate

inversion results could provide significant guidance for the establishment of the early warning

system [38], mineral exploration [9], and the siting of major facilities [3].

The quadratic Wasserstein metric requires mass conservation [45]. Thus, the normaliza-

tion process is mandatory for seismic signals, which becomes an essential limitation. For the

earthquake location problem, the amplitude of seismograms provides necessary constraints to

the origin time and the distance from the hypocenter to the receiver. Simply normalizing the

signals would lead to a nearly flat optimization objective function along a certain direction

due to the trade-off between the origin time and the distance. Thus, the minimum point of

the optimization objective function may deviate a lot even under the small magnitude of data

noise, which leads to low accurate location results, see Examples 3.1 for illustration.

The Wasserstein-Fish-Rao (WFR) metric is a newly developed optimal transport metric

and has attracted much attention [7, 8]. This metric is an interpolation between the quadratic

Wasserstein metric and the Fisher-Rao metric. From the fluid dynamics point of view [1], this

new metric introduces a source term in the continuity equation, allowing the direct comparison

between two signals with different total integrals. Thus this metric is also called unbalance

optimal transport metric [16, 18, 25, 34], which has been successfully applied in various fields

[15, 48, 55]. Benefited from the above features, the normalization of the seismic signals is no

longer required. Therefore, the important amplitude information is retained based on the WFR

metric, improving the local convexity and avoiding the degeneracy of the optimization objective

function near the global minimum point.

Remark 1.1. The Kantorovich-Rubinstein (KR) norm [30,31] does not require the signals to

have the same integral. However, the convexity of the optimization objective functions defined

with the KR norm may not be guaranteed for the earthquake location problems. For more

details, we refer to see [4], especially Figs. 2–3 for illustration.

Remark 1.2. In [4], we clearly see the superiority of the quadratic Wasserstein metric to the

L2 metric. So in this paper, we prefer to focus on the comparison between the new WFR metric

and the quadratic Wasserstein metric.

In this paper, we introduce the WFR metric to the earthquake location problem. It is a

significant extension of optimal transport theory in the application to the geophysical inverse


