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Abstract. In this paper, by making use of Divergence theorem for multiple integrals,
we establish some integral inequalities for Schur convex functions defined on bodies
B ⊂ Rn that are symmetric, convex and have nonempty interiors. Examples for three
dimensional balls are also provided.
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1 Introduction

For any x = (x1, · · · , xn) ∈ Rn, let x[1] ≥ · · · ≥ x[n] denote the components of x in

decreasing order, and let x↓ =
(

x[1], · · · , x[n]
)

denote the decreasing rearrangement of x.
For x, y ∈ Rn, x ≺ y if, by definition,

k

∑
i=1

x[i] ≤
k

∑
i=1

y[i], k = 1, · · · , n− 1,

n

∑
i=1

x[i] =
n

∑
i=1

y[i].

When x ≺ y, x is said to be majorized by y (y majorizes x). This notation and terminology
was introduced by Hardy, Littlewood and Pólya in 1934.

Functions that preserve the ordering of majorization are said to be Schur-convex. Per-
haps Schur-increasing would be more appropriate, but the term Schur-convex is by now
well entrenched in the literature, [5, p. 80].
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A real-valued function φ defined on a set A ⊂ Rn is said to be Schur-convex on A if

x ≺ y on A ⇒φ (x) ≤ φ (y) . (1.1)

If, in addition, φ (x) < φ (y) whenever x ≺ y but x is not a permutation of y, then φ is
said to be strictly Schur-convex on A. If A = Rn, then φ is simply said to be Schur-convex
or strictly Schur-convex.

For fundamental properties of Schur convexity see the monograph [5] and the refer-
ences therein. For some recent results, see [2–4] and [6–8].

The following result is known in the literature as Schur-Ostrowski theorem [5, p. 84]:

Theorem 1.1. Let I ⊂ R be an open interval and let φ : In → R be continuously differentiable.
Necessary and sufficient conditions for φ to be Schur-convex on In are

φ is symmetric on In (1.2)

and for all i 6= j, with i, j ∈ {1, · · · , n} ,

(zi − zj)

[
∂φ(z)

∂xi
− ∂φ(z)

∂xj

]
≥ 0 for all z ∈ In, (1.3)

where ∂φ
∂xk

denotes the partial derivative of φ with respect to its k-th argument.

With the aid of (1.2), condition (1.3) can be replaced by the condition

(z1 − z2)

[
∂φ(z)
∂x1

− ∂φ(z)
∂x2

]
≥ 0 for all z ∈ In. (1.4)

This simplified condition is sometimes more convenient to verify.
The above condition is not sufficiently general for all applications because the domain

of φ may not be a Cartesian product.
Let A ⊂ Rn be a set with the following properties:

(i) A is symmetric in the sense that x ∈ A ⇒ xΠ ∈ A for all permutations Π;
(ii) A is convex and has a nonempty interior.

We have the following result, [5, p. 85].

Theorem 1.2. If φ is continuously differentiable on the interior of A and continuous on A, then
necessary and sufficient conditions for φ to be Schur-convex on A are

φ is symmetric on A (1.5)

and

(z1 − z2)

[
∂φ(z)
∂x1

− ∂φ(z)
∂x2

]
≥ 0 for all z ∈ A. (1.6)


