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Abstract. In this paper, we calculate the sharp bound for the generalized m-linear n-
dimensional Hardy-Littlewood-Pólya operator on power weighted central and non-
central homogeneous Morrey spaces. As an application, the sharp bound for the
Hardy-Littlewood-Pólya operator on power weighted central and noncentral homo-
geneous Morrey spaces is obtained. Finally, we also find the sharp bound for the
Hausdorff operator on power weighted central and noncentral homogeneous Morrey
spaces, which generalizes the previous results.
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1 Introduction

As a multilinear generalization of Calderón operator, the m-linear n-dimensional Hardy-
Littlewood-Pólya operator is defined by

P( f1, · · · , fm)(x) =
∫

Rnm

f1(y1) · · · fm(ym)

max(|x|n, |y1|n, · · · , |yn|n)m dy1 · · · dym. (1.1)

Computation of the operator norm of integral operators is a challenging work in har-
monic analysis. In 2006, Bényi and Oh [3] proved that for n = 1,

‖P( f1, · · · , fm)‖Lp1×···×Lpm→Lp =
m

∑
i=1

m

∏
j=1, j 6=i

p′j.
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In fact, they proved sharp bound for certain multilinear integral operators that includes
the Hardy-Littlewood-Pólya operator. In 2011, Wu and Fu [9] got the best estimate of
the m-linear p-adic Hardy-Littlewood-Pólya operator on Lebesgue spaces with power
weights. In 2017, Batbold and Sawano [2] studied one-dimensional m-linear Hilbert-type
operators that includes Hardy-Littlewood-Pólya operator on weighted Morrey spaces,
and they obtained the sharp bounds.

For the Hardy-Littlewood-Pólya operator over p-adic field, we refer to Fu et al. [5]
and Li et. al. [6].

Inspired by [2, 3, 9], we will investigate a more general operator which includes the
Hardy-Littlewood-Pólya operator as a special case and consider its operator norm on two
power weighted Morrey spaces and its central version.

In the paper we use the following notation: For any measurable function w over a set
E is given by

w(E) =
∫

E
wdx.

In what follows, B(x, R) denotes the ball centered at x with radius R. Moreover, |B(x, R)|
denotes the Lebesgue measure of B(x, R). Also, B(0, R) denotes a ball of radius R cen-
tered at the origin.

We use this notation in the following definition of the weighted and weighted central
homogeneous Morrey spaces.

Definition 1.1. Let w1, w2 : Rn → (0, ∞) are positive measurable functions, 1 ≤ q < ∞ and
−1/q ≤ λ < 0. The weighted Morrey space Lq,λ(Rn, w1, w2) is defined by

Lq,λ(Rn, w1, w2) = { f ∈ Lq
loc : ‖ f ‖Lq,λ(Rn,w1,w2)

< ∞},

where

‖ f ‖Lq,λ(Rn,w1,w2)
= sup

a∈Rn, R>0
w1(B(a, R))−(λ+1/q)

(∫
B(a,R)

| f (x)|qw2(x)dx
)1/q

.

Remark 1.1. When w1 = w2 = 1, Lq,λ(Rn, w1, w2) is the classical Morrey spaces Lq,λ(Rn)
and it was introduced by Morrey [8]. Note that Lq,−1/q(Rn) = Lq(Rn), Lq,0(Rn) = L∞

and Lq,λ(Rn) = {0} with λ > 0. Based on the above reason, we only consider the case
−1/q < λ < 0.

Definition 1.2. Let w1, w2 : Rn → (0, ∞) are positive measurable functions, 1 ≤ q < ∞ and
−1/q ≤ λ < 0. The weighted central homogeneous Morrey space Ṁq,λ(Rn, w1, w2) is defined
by

Ṁq,λ(Rn, w1, w2) = { f ∈ Lq
loc : ‖ f ‖Ṁq,λ(Rn,w1,w2)

< ∞},
where

‖ f ‖Ṁq,λ(Rn,w1,w2)
= sup

R>0
w1(B(0, R))−(λ+1/q)

(∫
B(0,R)

| f (x)|qw2(x)dx
)1/q

. (1.2)


