Boundedness of the Multilinear Maximal Operator with the Hausdorff Content

Shao Liu^{1}, Qianjun $\mathrm{He}^{2, *}$ and Dunyan Yan ${ }^{1}$
${ }^{1}$ School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
${ }^{2}$ School of Applied Science, Beijing Information Science and Technology University, Beijing 100192, China

Received 1 February 2021; Accepted (in revised version) 27 March 2021

Abstract

In this paper, we establish the strong and weak boundedness of the multilinear maximal operator in the setting of the Choquet integral with respect to the α dimensional Hausdorff content. Our results cover Orobitg and Verdera's results in [8].

Key Words: Multilinear maximal operator, Hausdorff content, Choquet integrals.
AMS Subject Classifications: 42B25, 42B35

1 Introduction

The purpose of this paper is to establish the strong and weak boundedness of the multilinear maximal operator on the Choquet space. For m-couple locally integrable functions $\left(f_{1}, \cdots, f_{m}\right)$ on $\mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}$, the multi(sub)linear maximal operator M is defined by

$$
\begin{equation*}
M\left(f_{1}, \cdots, f_{m}\right)(x):=\sup _{Q \ni x} \prod_{i=1}^{m} \frac{1}{|Q|} \int_{Q}\left|f_{i}(y)\right| \mathrm{d} y, \tag{1.1}
\end{equation*}
$$

where the supremum is taken over all cubes Q containing x with sides parallel to the coordinate axes. Very often it is much more convenient to work with dyadic multilinear maximal function $M_{d}\left(f_{1}, \cdots, f_{m}\right)$, which is defined by the right-hand side of (1.1), but the supremum is taken only on the family of dyadic cubes containing x. Clearly, when $m=1, M$ is the classical Hardy-Littlewood maximal operator. These maximal operators are fundamental tools to study harmonic analysis, potential theory, and the theory of partial differential equations (see, e.g., $[3,5]$).

[^0]For $E \subset \mathbb{R}^{n}$ and $0<\alpha \leq n$, the α-dimensional Hausdorff content of E is defined by

$$
\begin{equation*}
H^{\alpha}(E):=\inf \sum_{j=1}^{\infty} \ell\left(Q_{j}\right)^{\alpha} \tag{1.2}
\end{equation*}
$$

where the infimum is taken over all coverings of E by countable families of cubes Q_{j} with sides parallel to the coordinate axes and $\ell(Q)$ denotes the side length of the cube Q. If we take the infimum in (1.2) only on coverings of E by dyadic squares, we can obtain an equivalent quantity $H_{d}^{\alpha}(E)$ called the dyadic α-dimensional Hausdorff content. In [8], Orobitg and Verdera used the Choquet integral with respect to the α-dimensional Hausdorff content to extend some well-known estimates for Hardy-Littlewood maximal opertaor. They proved the strong type inequality

$$
\begin{equation*}
\int(M f)^{p} \mathrm{~d} H^{\alpha} \leq C \int|f|^{p} \mathrm{~d} H^{\alpha} \tag{1.3}
\end{equation*}
$$

for $\alpha / n<p$, and the weak type inequality

$$
\begin{equation*}
H^{\alpha}\{x: M f(x)>t\} \leq C t^{-\frac{\alpha}{n}} \int|f|^{\frac{\alpha}{n}} \mathrm{~d} H^{\alpha} \tag{1.4}
\end{equation*}
$$

for any $t>0$ and $p=\alpha / n$. Here, the integrals are taken in the Choquet sense, that is, the Choquet integral of $\varphi \geq 0$ with respect to a set function Λ is defined by

$$
\int \varphi \mathrm{d} \Lambda:=\int_{0}^{\infty} \Lambda\left\{x \in \mathbb{R}^{n}: \varphi(x)>t\right\} \mathrm{d} t
$$

When $\alpha=n$, both (1.3) and (1.4) become the classical strong type inequality and weak type inequality, respectively. It is worth mentioning that the Orobitg-Verdera result came from their efforts to comprehend the special case $p=1$ that is first proved by Adams in [1]-a result of the H^{1}-BMO duality theory applied to the characterization of the Riesz capacities. In fact, the Orobitg-Verdera's proof is a modification of arguments due to Carleson [4] and Hormander [6]. Moreover, Tang [10] generalized the preceding results and established the boundedness of maximal operators on the weighted Choquet space and the Choquet-Morrey space.

Motivated by these works, we investigate the strong and weak boundedness of the multilinear maximal operators in the frame of Choquet integrals with respect to the α dimensional Hausdorff content.

Now, we formulate our main results as follows.
Theorem 1.1. Let $0<\alpha<n, 0<p \leq p_{i}<\infty$ with $1 \leq i \leq m$ such that $\frac{1}{p}=\frac{1}{p_{1}}+\cdots+\frac{1}{p_{m}}$ and $\frac{\alpha}{n}<\min \left\{p_{1}, \cdots, p_{m}\right\}$. Then, the following inequality

$$
\left(\int\left(M\left(f_{1}, \cdots, f_{m}\right)\right)^{p} \mathrm{~d} H^{\alpha}\right)^{\frac{1}{p}} \leq C \prod_{i=1}^{m}\left(\int\left|f_{i}\right|^{p_{i}} \mathrm{~d} H^{\alpha}\right)^{\frac{1}{p_{i}}}
$$

holds for some constant C depending on α, m, n and p_{i}.

[^0]: *Corresponding author. Email addresses: qjhe@bistu.edu.cn (Q. J. He), ydunyan@ucas.ac.cn (D. Y. Yan), liushao19@mails.ucas.ac.cn (S. Liu)

