
East Asian Journal on Applied Mathematics Vol. 13, No. 4, pp. 935-959

doi: 10.4208/eajam.2022-308.300123 November 2023

Arbitrary High-Order Structure-Preserving Schemes

for Generalized Rosenau-Type Equations

Chaolong Jiang1,2, Xu Qian1,*, Songhe Song1 and Chenxuan Zheng2

1Department of Mathematics, College of Science, National University of

Defense Technology, Changsha, 410073, P.R. China.
2School of Statistics and Mathematics, Yunnan University of Finance and

Economics, Kunming 650221, P.R. China.

Received 6 November 2022; Accepted (in revised version) 30 January 2023.

Abstract. Arbitrary high-order numerical schemes conserving the momentum and en-

ergy of the generalized Rosenau-type equation are studied. Derivation of momentum-

preserving schemes is made within the symplectic Runge-Kutta method coupled with the

standard Fourier pseudo-spectral method in space. Combining quadratic auxiliary vari-

able approach, symplectic Runge-Kutta method, and standard Fourier pseudo-spectral

method, we introduce a class of high-order mass- and energy-preserving schemes for the

Rosenau equation. Various numerical tests illustrate the performance of the proposed

schemes.
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1. Introduction

We consider the following generalized Rosenau-type equations:

∂tu(x , t) + κ∂x u(x , t)−δ∂x x tu(x , t) + b∂x x xu(x , t)

+ α∂x x x x tu(x , t) + β∂x

�

u(x , t)p
�

= 0, x ∈ Ω ⊂ R, t > 0,

u(x , 0) = u0(x), x ∈ Ω ⊂ R,

(1.1)

where t and x are respectively time and spatial variables, κ,δ > 0, b,α > 0 and β given

real constants, u := u(x , t) is a real-valued wave function, p a given positive integer, u0(x)

an initial condition, and Ω = [x l , xr] a bounded domain. In what follows, the Rosenau

equation (1.1) will be also supplemented by periodic boundary conditions.
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Initially, the Eq. (1.1) has been used to describe the dynamics of dense discrete systems

[34]. Nowadays, it plays an important role in fluid mechanics of the atmosphere and ocean.

Moreover, when u is assumed to be smooth, the Eq. (1.1) satisfies the following Hamiltonian

formulation:

ut = J
δH
δu

, (1.2)

where J = −(1− δ∂x x + α∂x x x x)
−1∂x is a Hamiltonian operator and H the Hamiltonian

functional — i.e.

H (t) =
∫

Ω

�

κ

2
u2 − b

2
u2

x +
β

p+ 1
up+1

�

d x , t ≥ 0. (1.3)

In addition to the Hamiltonian energy (1.3), the Eq. (1.1) also conserves the mass

M (t) =
∫

Ω

ud x ≡M (0), t ≥ 0, (1.4)

and the momentum

I (t) =
∫

Ω

�

1

2
u2 +

δ

2
u2

x +
α

2
u2

x x

�

d x ≡ I (0), t ≥ 0. (1.5)

In order to solve such Hamiltonian partial differential equations, it is often preferable

to use special numerical schemes, which would inherit one or more intrinsic properties of

the original system exactly in a discrete sense. Note that such a kind schemes are called

structure-preserving — cf. [13, 14, 21]. Chung [10] proposed an implicit finite difference

(IFD) scheme, which can satisfy the discrete analogue of momentum (1.5) and proved that

the scheme has the second-order accuracy both in time and space. Subsequently, Omrani

et al. [30] developed a linearly implicit momentum-preserving finite difference scheme for

the classical Rosenau equation, in which a linear system is to be solved at every time step.

Thus, it is computationally much cheaper than that of the IFD scheme. Over the years,

various momentum-preserving schemes for the Eq. (1.1) have been proposed and analyzed

— cf. Refs [1, 2, 22, 28, 31, 42, 43, 45–47]. However, to the best of our knowledge, all of

existing momentum-preserving schemes have at most second-order accuracy in time. It has

been shown in [18,26] that, compared with the second-order schemes, the high-order ones

not only provide smaller numerical errors as a large time step chosen, but also are more

advantages in the robustness. Consequently, one of the goals of this work is to present

a novel paradigm for developing arbitrary high-order momentum-preserving schemes for

the Eq. (1.1).

In addition to the momentum conservation law (1.5), the Eq. (1.1) satisfies the Hamil-

tonian energy (1.3), which is one of the most important first integrals of the Hamiltonian

system. Cai et al. [3] proposed a second-order energy-preserving scheme based on the av-

eraged vector field method [32] and two fourth-order energy-preserving schemes based on

composition ideas [21]. Nevertheless, it is shown in [21] that the high-order schemes ob-

tained by the composition method will be at the price of a terrible zig-zag of the step points

— cf. [21, Fig. 4.2], which may be tedious and time consuming. Thus, the construction of

high-order energy-preserving schemes for the Rosenau equation (1.1) seems to be still at


