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Abstract. Matrix splitting iteration methods play a vital role in solving large sparse
linear systems. Their performance heavily depends on the splitting parameters, how-
ever, the approach of selecting optimal splitting parameters has not been well de-
veloped. In this paper, we present a multitask kernel-learning parameter prediction
method to automatically obtain relatively optimal splitting parameters, which con-
tains simultaneous multiple parameters prediction and a data-driven kernel learning.
For solving time-dependent linear systems, including linear differential systems and
linear matrix systems, we give a new matrix splitting Kronecker product method, as
well as its convergence analysis and preconditioning strategy. Numerical results il-
lustrate our methods can save an enormous amount of time in selecting the relatively
optimal splitting parameters compared with the exists methods. Moreover, our itera-
tion method as a preconditioner can effectively accelerate GMRES. As the dimension
of systems increases, all the advantages of our approaches become significantly. Es-
pecially, for solving the differential Sylvester matrix equation, the speedup ratio can
reach tens to hundreds of times when the scale of the system is larger than one hun-
dred thousand.
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1 Introduction

In this paper, we consider the time-dependent linear systems (TDLSs) of the form

ẋ(t)=L◦x(t), t∈ [0,T], (1.1)
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where x(t) : [0,T]→V,V is R
n(n ∈ N), x(0) = x0 ∈ V is an initial value, and L is a lin-

ear operator. TDLSs appear in many branches of science and engineering, such as dy-
namical systems, quantum mechanics, semi-discretization of partial differential equa-
tions, differential matrix equations, etc. [2, 13, 18, 20, 25, 29]. A series of discrete methods
suitable for them have been developed, such as linear multistep schemes, Runge-Kutta
methods, general linear methods, block implicit methods, and boundary value methods
(BVMs) [7,8,10,16,17,19,23]. After temporal discretization, each TDLS can be transformed
into a sparse linear system

Qx=b, Q∈R
n×n is nonsingular and b∈R

n.

For solving linear systems, matrix splitting iteration methods play an important role
as either solvers or preconditioners. The classic matrix splitting forms are all based on
Q= M−N, where M is a nonsingular matrix such that a linear system with the coeffi-
cient matrix M can easily be solved, such as Jacobi, Gauss-Seidel, and successive over-
relaxation iteration methods [30]. Alternating direction implicit (ADI) schemes can ef-
fectively improve the performance by alternately updating approximate solution. They
were initially designed to solve partial differential equations [15,26], and were gradually
extended to more branches, including numerical algebra and optimization [24, 30]. The
typical schemes in numerical algebra are Hermitian and skew-Hermitian splitting type
methods [3–5, 31]. Further, a general ADI (GADI) framework has recently been devel-
oped to put most existing ADI methods into a unified framework [22].

Matrix splitting iteration methods require coefficient matrix Q into different parts
with splitting parameters. The convergence and performance of them are very sensitive
to splitting parameters, therefore, choosing the optimal splitting parameters is critical.
There have been several approaches to select splitting parameters. Experimental traver-
sal method is limited due to an unbearable computational cost, especially for large-scale
systems. A more common approach is using theoretical analysis to estimate the bound of
splitting parameters in a case-by-case way [3,11], while its performance heavily depends
on the theoretical bound and the scale of systems. Recently, a data-driven approach,
Gaussian process regression (GPR) method [22], has presented to predict optimal split-
ting parameters by choosing an appropriate kernel. GPR method can efficiently predict
one splitting parameter at one time.

However, matrix splitting iteration methods can have two or more splitting parame-
ters, among which there are complicated links. Independently predicting each splitting
parameter would inevitably affect the prediction accuracy of the original GPR method.
Therefore, it requires improving the GRP method to predict multi-parameters simulta-
neously. Another critical component that determines GPR’s availability is kernel func-
tion [34, 35]. The original GRP method chooses kernel function by the problem’s proper-
ties [22], which might produce an artificial error. Moreover, the chosen kernel in a kind
of problems may be difficult to extend to others. Therefore, automatically learning kernel
functions based on distinct problems is still a challenge.


