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Abstract. In this paper, we propose a two-level simultaneous orthogonal matching
pursuit (TLSOMP) algorithm for simultaneous sparse approximation (SSA) problems.
Most existing algorithms for SSA problems are directly generalized from the ones for
the sparse approximation (SA) problems, for example, the simultaneous orthogonal
matching pursuit (SOMP) method is generalized from the orthogonal matching pur-
suit (OMP) method. Our newly proposed algorithm is designed from another view-
point. We first analyze the noiseless case and propose a selection algorithm. Motivated
by the analysis and presuming noise as a perturbation, we extend the selection algo-
rithm into a TLSOMP algorithm. This novel algorithm mainly uses the information
from the subspace spanned by the multiple signals, which is not available in SA prob-
lems. Numerical experiments show the superiority of our TLSOMP algorithm over
other traditional SSA solvers.
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1 Introduction

The sparse approximation problem, which aims at recovering a signal with the fewest
linear combination of elements from a redundant dictionary [35], has been studied exten-
sively [34], and it has various applications [5,12,16,28,31]. In mathematical formula, this
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problem can be illustrated as

Y=AX+E , (1.1)

where A is the redundant dictionary, X is an unknown row-sparse matrix, i.e. only few
rows of X are nonzero, and E is the noise. When X and Y are vectors, the problem is
called sparse approximation (SA) problem, and while X and Y are matrices, we call it
simultaneous sparse approximation problem.

Related work. There are many classical methods for SA problems, such as least squares
support vector machines (LS-SVMs) method [33], orthogonal matching pursuit method
[35], sparse Bayesian learning (SBL) method [43], iterative thresholding method [19],
penalty decomposition method [25]. For the mathematical perspective of SA problems,
which is also known as compressive sensing, we refer the readers to [11].

A natural extension of the SA problem is the SSA problem, which aims at finding
jointly sparse representations of multiple signals. There are also lots of applications of
SSA problems, such as [7, 14, 15, 26]. Most methods for SA problems have been general-
ized into the SSA problems, such as simultaneous orthogonal matching pursuit method
[38], convex relaxation method [36], simultaneous sparse Bayesian learning (SSBL) me-
thod [44]. Other classical methods can be found in the survey [32]. Most of these methods
handle the multiple signals by a direct way, and recently, a spectral pursuit method for
the SSA problem was proposed in [40], which considers the spectral information of the
multiple signals.

The key point of solving SSA problem is to use the multiple signals Y efficiently to-
gether. In this paper, we explore the problem in a subspace view, and the main technique
for subspace approximation is the perturbation theory about singular value decompo-
sition (SVD). The basic perturbation bound about the singular values of a matrix is the
Weyl’s inequality, which can be dated back to one century before [42], and it has a gener-
alization of the Mirsky’s inequality [30]. For the analysis of the subspace, it has a fruitful
research history. To the best of our known, the first result in this area is the Wedin’s the-
orem [41]. Due to the important role of SVD in numerical linear algebra (NLA), there are
also lots of significant researches in NLA view, such as [21–23].

Contributions. In this paper, we propose a TLSOMP algorithm for the SSA problem.

The first level is finding a well-conditioned sub-dictionary A∗ satisfying that span{Y}
is almost in span{A∗}. First, we obtain the space information of Y by computing the
truncated SVD, and the row-sparsity s is estimated by the numerical rank of Y. Suppose
U is an orthogonal basis of the left singular space corresponding to the largest s singular
values of Y, and in order to extract some columns of A to approximate span{U}, we
first compute the error of ‖a−UUTa‖ for all column vectors a of A, which measures
the distance between a and span{U}. After finding N1 columns of A, whose distance
errors are small, we select N2 columns from them as A∗ by solving a column subset
selection problem (CSSP) [1, 9, 37], which can be solved approximately by rank revealing
QR factorization (RRQR) method [3, 4, 17].


